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Abstract: Constrained robot motion planning is a widely used technique to solve
complex robot tasks. We consider the problem of learning representations of con-
straints from demonstrations with a deep neural network, which we call Equal-
ity Constraint Manifold Neural Network (ECoMaNN). The key idea is to learn
a level-set function of the constraint suitable for integration into a constrained
sampling-based motion planner. Learning proceeds by aligning subspaces in the
network with subspaces of the data. We combine both learned constraints and ana-
lytically described constraints into the planner and use a projection-based strategy
to find valid points. We evaluate ECoMaNN on its representation capabilities of
constraint manifolds, the impact of its individual loss terms, and the motions pro-
duced when incorporated into a planner.

Video: https://www.youtube.com/watch?v=WoC7ngp4XNk

Code: https://github.com/gsutanto/smp_manifold_learning
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1 Introduction

Robots must be able to plan motions that follow various constraints in order for them to be useful
in real-world environments. Constraints such as holding an object, maintaining an orientation, or
staying within a certain distance of an object of interest are just some examples of possible restric-
tions on a robot’s motion. In general, two approaches to many robotics problems can be described.
One is the traditional approach of using handwritten models to capture environments, physics, and
other aspects of the problem mathematically or analytically, and then solving or optimizing these
to find a solution. The other, popularized more recently, involves the use of machine learning to
replace, enhance, or simplify these hand-built parts. Both have challenges: Acquiring training data
for learning can be difficult and expensive, while describing precise models analytically can range
from tedious to impossible. Here, we approach the problem from a machine learning perspective
and propose a solution to learn constraints from demonstrations. The learned constraints can be used
alongside analytical solutions within a motion planning framework.

In this work, we propose a new learning-based method for describing motion constraints, called
Equality Constraint Manifold Neural Network (ECoMaNN). ECoMaNN learns a function which
evaluates a robot configuration on whether or not it meets the constraint, and for configurations near
the constraint, on how far away it is. We train ECoMaNN with datasets consisting of configurations
that adhere to constraints, and present results for kinematic robot tasks learned from demonstrations.
We use a sequential motion planning framework to solve motion planning problems that are both
constrained and sequential in nature, and incorporate the learned constraint representations into it.
We evaluate the constraints learned by ECoMaNN with various datasets on their representation
quality. Further, we investigate the usability of learned constraints in sequential motion planning
problems.

* Giovanni Sutanto is now at X Development LLC. He contributed to this work during his past affiliation with
the Robotic Embedded Systems Laboratory at USC.
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2 Related work

2.1 Manifold learning

Manifold learning is applicable to many fields and thus there exist a wide variety of methods for it.
Linear methods include PCA and LDA [1], and while they are simple, they lack the complexity to
represent complex manifolds. Nonlinear methods include multidimensional scaling (MDS), locally
linear embedding (LLE), Isomap, and local tangent space alignment (LTSA). These approaches use
techniques such as eigenvalue decomposition, nearest neighbor reconstructions, and local-structure-
preserving graphs to visualize and represent manifolds. In LTSA, the local tangent space information
of each point is aligned to create a global representation of the manifold. We refer the reader to
[2] for details. Recent work in manifold learning additionally takes advantage of (deep) neural
architectures. Some approaches use autoencoder-like models [3, 4] or deep neural networks [5]
to learn manifolds, e.g. of human motion. Others use classical methods combined with neural
networks, for example as a loss function for control [6] or as structure for the network [7]. Locally
Smooth Manifold Learning (LSML) [8] defines and learns a function which describes the tangent
space of the manifold, allowing randomly sampled points to be projected onto it. Our work is related
to many of these approaches; in particular, the tangent space alignment in LTSA is an idea that
ECoMaNN uses extensively. Similar to the ideas presented in this paper, the work in [9] delineates
an approach to solve motion planning problems by learning the solution manifold of an optimization
problem. In contrast to others, our work focuses on learning implicit functions of equality constraint
manifolds, which is a generalization of the learning representations for Signed Distance Fields (SDF)
[10], up to a scale, for higher-dimensional manifolds.

2.2 Learning from demonstration

Learning from demonstration (LfD) techniques learn a task representation from data which is usable
to generate robot motions that imitate the demonstrated behavior. One approach to LfD is inverse
optimal control (IOC), which aims to find a cost function that describes the demonstrated behavior
[11, 12, 13]. Recently, IOC has been extended to extract constraints from demonstrations [14, 15].
There, a cost function as well as equality and inequality constraints are extracted from demonstra-
tions, which are useful to describe behavior like contacts or collision avoidance. Our work can be
seen as a special case where the task is only represented in form of constraints. Instead of using
the extracted constraints in optimal control methods, we integrate them into sampling-based motion
planning methods, which are not parameterized by time and do not suffer from poor initializations.
A more direct approach to LfD is to learn parameterized motion representations [16, 17, 18]. They
represent the demonstrations in a parameterized form such as Dynamic Movement Primitives [19].
Here, learning a primitive from demonstration is often possible via linear regression; however, the
ability to generalize to new situations is more limited. Other approaches to LfD include task space
learning [20] and deep learning [21]. We refer the reader to the survey [22] for a broad overview on
LfD.

2.3 Constrained sampling-based motion planning

Sampling-based motion planning (SBMP) is a broad field which tackles the problem of motion plan-
ning by using randomized sampling techniques to build a tree or graph of configurations (also called
samples), which can then be used to plan paths between configurations. Many SBMP algorithms
derive from rapidly-exploring random trees (RRT) [23], probabilistic roadmaps (PRM) [24], or their
optimal counterparts [25]. A more challenging and realistic motion planning task is that of con-
strained SBMP [26], where there are motion constraints beyond just obstacle avoidance which lead
to a free configuration space manifold of lower dimension than the ambient configuration space.
Previous research has also investigated incorporating learned constraints or manifolds into planning
frameworks. These include performing planning in learned latent spaces [27], learning a better
sampling distribution in order to take advantage of the structure of valid configurations rather than
blindly sample uniformly in the search space [28, 29], and attempting to approximate the manifold
(both explicitly and implicitly) of valid points with graphs in order to plan on them more effec-
tively [30, 31, 32]. Our method differs from previous work in that ECoMaNN learns an implicit
description of a constraint manifold via a level set function, and during planning, we assume this



representation for each task. We note that our method could be combined with others, e.g. learned
sampling distributions, to further improve planning results.

3 Background

3.1 Manifold theory

Here we present the necessary background on manifold theory [33]. Informally, a manifold is a sur-
face which can be well-approximated locally using an open set of a Euclidean space near every point.
Manifolds are generally defined using charts, which are collections of open sets whose union yields
the manifold, and a coordinate map, which is a continuous map associated with each set. However,
an alternative representation which is useful from a computational perspective is to represent the
manifold as the zero level set of a continuous function. Since the latter representation is a direct
result of the implicit function theorem, it is referred to as implicit representation of the manifold.
For example, the manifold represented by the zero level set of the function hps(x,y) = 22 +y? — 1
(.e. {(z,y) | 22 +y*—1 = 0}) is a circle. Moreover, the implicit function associated with a smooth
manifold is smooth. Thus, we can associate a manifold with every equality constraint. The vector
space containing the set of all tangent vectors at q is denoted using Ty M. Given a manifold with the
corresponding implicit function h,s(q), if we endow its tangent spaces with an appropriate inner
product structure, then such a manifold is often referred as a Riemannian manifold. In this work the
manifolds are assumed to be Riemannian.

3.2 Motion planning on manifolds

In this work, we aim to integrate learned constraint manifolds into a motion planning framework
[34]. The motion planner considers kinematic motion planning problems in a configuration space
C C R9. A robot configuration g € C describes the state of one or more robots with d degrees
of freedom in total. A manifold M is represented as an equality constraint hps(q) = 0. The set
of robot configurations that are on a manifold M is given by Cpy = {q € C | hps(q) = 0} . The
planning problem is defined as a sequence of (m + 1) such manifolds M = {M;, Ma, ..., My, 11}
and an initial configuration g € Cas, on the first manifold. The goal is to find a path from Qsar
that traverses the manifold sequence M and reaches a configuration on the goal manifold M, 1.
A path on the i-th manifold is defined as 7; : [0,1] — Cpy, and J(7;) is the cost function of a
path J : T — Rx>o where 7 is the set of all non-trivial paths. The problem is formulated as an
optimization over a set of paths 7 = (74, ..., Ty, ) that minimizes the sum of path costs under the
constraints of traversing M:

m
T* = arg min Z J(7;)
T Q)
st. 71(0) = Qstarts Tm(1) € Catyiy N Criceymt1,  Ti(1) = Tip1(0) Vet m—1
Crree,i+1 = Y (Ciree,i»Ti)  Viz1,.om,  Ti(8) € Cary M Cireeyi Vi=1,....m Vselo,1]

T is an operator that describes the change in the free configuration space (the space of all configu-
rations that are not in collision with the environment) Ce When transitioning to the next manifold.
The operator Y is not explicitly known and we only assume to have access to a collision checker that
depends on the current robot configuration and the object locations in the environment. Intelligently
performing goal-achieving manipulations that change the free configuration space forms a key chal-
lenge in robot manipulation planning. The SMP* (Sequential Manifold Planning) algorithm is able
to solve this problem for a certain class of motion planning scenarios. It iteratively applies RRT* to
find a path that reaches the next manifold while staying on the current manifold. For further details
of the SMP* algorithm, we refer the reader to [34]. In this paper, we employ data-driven learning
methods to learn individual equality constraints hy;(q) = 0 from demonstrations with the goal to
integrate them with analytically defined manifolds into this framework.

4 Equality Constraint Manifold Neural Network (ECoMaNN)

We propose a novel neural network structure, called Equality Constraint Manifold Neural Net-
work (ECoMaNN), which is a (global) equality constraint manifold learning representation that



enforces the alignment of the (local) tangent spaces and normal spaces with the information ex-
tracted from the Local Principal Component Analysis (Local PCA) [35] of the data. ECoMaNN
takes a configuration q as input and outputs the prediction of the implicit function h;(q). We
train ECoMaNN in a supervised manner, from demonstrations. One of the challenges is that the
supervised training dataset is collected only from demonstrations of data points which are on the
manifold Cyy, called the on-manifold dataset. Collecting both the on-manifold C,; and off-manifold
C\v = {q € C | ha(q) # 0} datasets for supervised training would be tedious because the im-
plicit function h s values of points in C\ 5 are typically unknown and hard to label. We show that,
though our approach is only given data on Cyy, it can still learn a useful and sufficient representation
of the manifold for use in planning.

Our goal is to learn a single global representation of the constraint man-
ifold M in the form of a neural network. Our approach leverages lo-
cal information on the manifold in the form of the tangent and normal
spaces [36]. With regard to hjs, the tangent and normal spaces are
equivalent to the null and row space, respectively, of the Jacobian ma-

tI‘iX J]W (q) = Ohm (q)

the point §. Using on-manifold data, the local information of the man-

_, and valid in a small neighborhood around

dq

ifold can be analyzed using Local PCA. For each data point q in the
on-manifold dataset, we establish a local neighborhood using K -nearest
neighbors (KNN) £ = {qQ1,Qa, ..., 4k}, with K > d. After a change
of coordinates, q becomgs the origin of a new local coordinate frame F7,,
and the KNN becomes K = {q1, Q2 - - .,qx } with x = q; — q for all
values of k. Defining the matrix X = [q1 Q2 QK]T e RExd
we can compute the covariance matrix S = XX € R?*? The
eigendecomposition of S = VX VT gives us the Local PCA. The ma-
trix V contains the eigenvectors of S as its columns in decreasing order
w.r.t. the corresponding eigenvalues in the diagonal matrix 3. These
eigenvectors form the basis of the coordinate frame Fr..

This local coordinate frame F, is tightly related to the tangent space

Figure 1: A visualiza-
tion of data augmenta-
tion along the 1D nor-
mal space of a point
q in 3D space. Here,
purple points are the
dataset, pink points are
the KNN of q, and
the dark red point is q.
q is at the axes ori-
gin, and the green plane
is the approximated tan-
gent space at that point.

T4M and the normal space Ny M of the manifold M at q. That is, the

(d—1) eigenvectors corresponding to the (d—[) biggest eigenvalues of X form a basis of T4 M, while
the remaining [ eigenvectors form the basis of Nq M. Furthermore, the [ smallest eigenvalues of 3
will be close to zero, resulting in the [ eigenvectors associated with them forming the basis of the
null space of S. On the other hand, the remaining (d—1) eigenvectors form the basis of the row space
of S. We follow the same technique as Deutsch and Medioni [36] for automatically determining the
number of constraints [ from data, which is also the number of outputs of ECoMaNN'. Suppose the
eigenvalues of S are {A1, A2,..., A\q} (in decreasing order w.r.t. magnitude). Then the number of
constraints can be determined as [ = arg max ([A\1 — A2, Ao — Az, ..., Ag—1 — Ag).

We now present several methods to define and train ECoMaNN, as follows:

4.1 Alignment of local tangent and normal spaces

ECoMaNN aims to align the following:

(a) the null space of J; and the row space of S (which must be equivalent to tangent space T M)
(b) the row space of J s and the null space of S (which must be equivalent to normal space Ngq M)

for the local neighborhood of each point q in the on-manifold dataset. Suppose the eigenvectors of S
are {v1,va,...,vq} and the singular vectors of J s are {e1, ea, ..., €4}, where the indices indicate
decreasing order w.r.t. the eigenvalue/singular value magnitude. The null spaces of S and J,; are
spanned by {vg4_;4+1,...,vq} and {e;11,...,eq}, respectively. The two conditions above imply
that the projection of the null space eigenvectors of J,; into the null space of S should be 0, and
similarly for the row spaces. Hence, we achieve this by training ECoMaNN to minimize projection
errors || VNVEEN |5 and || ENEL V|5 with Vi = [va—141 ed]
at all the points in the on-manifold dataset.

vq] and Ex = [€141

"Here we assume that the intrinsic dimensionality of the manifold at each point remains constant.



4.2 Data augmentation with off-manifold data

The training dataset is on-manifold, i.e., each point q in the dataset satisfies hy;(q) = 0. Through
Local PCA on each of these points, we know the data-driven approximation of the normal space
of the manifold at q. Hence, we know the directions where the violation of the equality constraint
increases, i.e., the same direction as any vector picked from the approximate normal space. Since our
future use of the learned constraint manifold on motion planning does not require the acquisition of
the near-ground-truth value of hp;(q) # 0, we can set this off-manifold valuation of hy; arbitrarily,
as long as it does not interfere with the utility for projecting an off-manifold point onto the manifold.
Therefore, we can augment our dataset with off-manifold data to achieve a more robust learning of
ECoMaNN. For each point q in the on-manifold dataset, and for each random unit vector u picked
from the normal space at q, we can add an off-manifold point ¢ = q + zew with a positive integer ¢
and a small positive scalar € (see Figure 1 for a visualization). However, if the closest on-manifold
data point to an augmented point § = q + iew is not q, we reject it. This prevents situations like
augmenting a point on a sphere beyond the center of the sphere. Data augmentation is a technique
used in various fields, and our approach has similarities to others [37, 38], though in this work
we focus on using augmentation to aid learning an implicit constraint function for robotic motion
planning. With this data augmentation, we now define several losses used to train ECoMaNN.

4.2.1 Training losses

Loss based on the norm of the output vector of ECoMaNN For the augmented data point
q = q + ieu, we set the label satisfying ||has(q)||, = te. During training, we minimize the

norm prediction error Loom = ||(||har (@), — t€) ||§ for each augmented point q.

Furthermore, we define the following three siamese losses. The main intuition behind these losses

is that we expect the learned function &, to output similar values for similar points.

Siamese loss for reflection pairs For the augmented data point § = q + iew and its reflection pair

q — ieu, we can expect that hps(q + iew) = —hpr(q — iew), or in other words, that an augmented

point and its reflection pair should have the same hj; but with opposite signs. Therefore, during

training we minimize the siamese 10ss Lefiection = ||has(q + tew) + has(q — ieu) ||§

Siamese loss for augmentation fraction pairs Similarly, between the pair q = q + ieu

and q + jieu, where a and b are positive integers satisfying 0 < 7 < 1, we can expect

that hM(qu.ieu) _ ha (Q+fieu) )
Ihas (atieu)ll, ||hM(q+%i6u)||2

the same on an augmented point q + %Z€w as on any point in between the on-manifold point

q and that augmented point q + ¢cu. Hence, during training we minimize the siamese loss
2

In other words, the normalized hj; values should be

hy(qtiew)  hu(gt+gieu)
har(aticw)lly,  ||ha(a+giew) ||, |12
Siamese loss for similar augmentation pairs Suppose for nearby on-manifold data points q, and
., their approximate normal spaces Nqg, M and Ny M are spanned by eigenvector bases Fr, =
{vi_1415- v} and FR = {vg_;, ;... v}, respectively. If F, and F§ are closely aligned,
Z?=d71+1 w; v

=Y E——— —
HZj:d_H_l w;v; H2

ﬁfraction = H M

the random unit vectors u,, from F5; and u. from %, can be obtained by u,

E?=d4+1 w;v]
1325 aigr wivs |,
normal distribution common to both the bases of Fy; and F5;. This will ensure that u, and u,. are
aligned as well, and we can expect that hys(qq + i€ug) = hpr(qe + ieu.). In other words, two
aligned augmented points in the same level set should have the same hj; value. Therefore, during
training we minimize the siamese 1088 Lgmilar = ||Par(Qa + t€ta) — har(qe + iew,) ||§ In general,
the alignment of F3, and F75; is not guaranteed, for example due to the numerical sensitivity of
singular value/eigen decomposition. Therefore, we introduce an algorithm for Orthogonal Subspace
Alignment (OSA) in the Supplementary Material to ensure that this assumption is satisfied.

and u, = , where {wg_;41,...,wyq} are random scalar weights from a standard

While Lo governs only the norm of ECoMaNN’s output, the other three losses Liefiection, Lfractions
and Lgjmilar constrain the (vector) outputs of ECoMaNN based on pairwise input data points without
explicitly hand-coding the desired output itself. We avoid the hand-coding of the desired output
because this is difficult for high-dimensional manifolds, except when there is prior knowledge about
the manifold available, such as in the case of Signed Distance Fields (SDF) manifolds.
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Figure 2: Images a and b visualize a slice near z = 0 of the Plane dataset for experiment 5.1. Red
points are the training dataset and blue points are samples generated from the learned manifolds.
The points projected onto the manifold using ECoMaNN are closer to the manifold, with an 85%
projection success rate. A significant portion of the points generated using the VAE lie inside the
surface, which leads to a lower success rate of 77%. Figure ¢ shows the projection success of
ECoMaNN over the number of training iterations. The quantitative results are found in Table 1.

Table 1: Accuracy and precision of learned manifolds averaged across 3 instances. “Train” indi-
cates results on the on-manifold training set; “test” indicates N = 1000 projected (ECoMaNN) or
sampled (VAE) points.

I ECoMaNN VAE
Dataset || py,, (train) Py, (test) Py, | p,, (train) Py, (test) P,
Sphere 0.024 £0.009 0.023 +0.009 100.0£0.0 | 0.105£0.088 0.161 +0.165 46.867 + 18.008
3D Circle || 0.029 +0.011 0.030 +£0.011 78.0 +22.0 | 0.894 £0.074 0.902 %+ 0.069 0.0+0.0

Plane 0.020 £ 0.005 0.020 £0.005 88.5+10.5 | 0.053 £0.075 0.112£0.216  77.733 £ 7.721
Orient 0.090 £0.009 0.090 £0.009  73.5+6.5 | 0.010+£0.037 0.085 £ 0.237 85.9 £ 1.068

5 Experiments

We use the robot simulator MuJoCo [39] to generate four datasets. The size of each dataset is
denoted as N. We define a ground truth constraint h s, randomly sample points in the configuration
(joint) space, and use a constrained motion planner to find robot configurations in Cj, that produce
the on-manifold datasets: Sphere: 3D point that has to stay on the surface of a sphere. N =
5000,d = 3,1 = 1. 3D Circle: A point that has to stay on a circle in 3D space. N = 1000,d =
3,1 = 2. Plane: Robot arm with 3 rotational DoFs where the end effector has to be on a plane.
N = 20000,d = 3,1 = 1. Orient: Robot arm with 6 rotational DoFs that has to keep its orientation
upright (e.g., transporting a cup). N = 21153,d = 6,1 = 2. In the following experiments, we
parametrize ECoMaNN with 4 hidden layers of size 36, 24, 18, and 10. The hidden layers use a
tanh activation function and the output layer is linear.

5.1 Accuracy and precision of learned manifolds

We compare the accuracy and precision of the manifolds learned by ECoMaNN with those learned
by a variational autoencoder (VAE) [40]. VAEs are a popular generative model that embeds data
points as a distribution in a learned latent space, and as such new latent vectors can be sampled and
decoded into new examples which fit the distribution of the training data.” We use two metrics: First,
the distance p7,,, which measures how far a point is away from the ground-truth manifold A ,; and
which we evaluate for both the training data points and randomly sampled points, and second, the
percent P, =~ of randomly sampled points that are on the manifold /,;. We use a distance threshold
of 0.1 to determine success when calculating P}, . For ECoMaNN, randomly sampled points are
projected using gradient descent with the learned implicit function until convergence. For the VAE,
latent points are sampled from A (0, 1) and decoded into new configurations.

2We also tested classical manifold learning techniques (Isomap, LTSA, PCA, MDS, and LLE). We found
them empirically not expressive enough and/or unable to support projection or sampling operations, necessary
capabilities for this work.
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Figure 3: Trained ECoMaNN’s level set contour plot and the normal space eigenvector field, after
training on the sphere constraint dataset (left) and plane constraint dataset (right).

Table 2: Percentage of projection success rate for a variety of ablations of ECoMaNN components.

| Ablation Type [ Sphere \ 3D Circle \ Plane ]
No Ablation (98.67 £ 1.89) % | (100.00 +0.00) % | (92.33 4+ 10.84) %
w/o Data Augmentation (900245 % | (16.67 +4.64) % (3.67+3.30)%
w/o OSA (64.33 £9.03) % | (33.33 +£17.13) % | (61.00 £ 6.16) %
w/o Siamese Losses (17.33 £3.40) % | (65.67 +26.03) % | (35.67 £5.56) %

w/o Siamese Loss Liefiection || (92.67 = 4.03) % (9.67 £2.05) % (38.00 £ 16.87) %
w/o Siamese Loss Liraction (88.33 £8.34)% | (99.67 £047)% | (85.33 £16.68) %
w/o Siamese Loss Lgimilar (83.00 £5.10) % | (70.67 £21.00) % | (64.33 £2.62) %

We sample 1000 points for each of these comparisons. We report results in Table 1 and a visualiza-
tion of projected samples in Fig. 2. We also plot the level set and the normal space eigenvector field
of the ECoMaNN trained on the sphere and plane constraint dataset in Fig. 3. In all experiments,
we set the value of the augmentation magnitude € to the square root of the mean eigenvalues of the
approximate tangent space, which we found to work well experimentally. With the exceptions of the
embedding size and the input size, which are set to the dimensionality d — [ as the tangent space of
the constraint learned by ECoMaNN and the ambient space dimensionality d of the dataset, respec-
tively, the VAE has the same parameters for each dataset: 4 hidden layers with 128, 64, 32, and 16
units in the encoder and the same but reversed in the decoder; the weight of the KL divergence loss
B = 0.01; using batch normalization; and trained for 100 epochs.

Our results show that for every dataset except Orient, ECoMaNN out performs the VAE in both
metrics. ECoMaNN additionally outperforms the VAE with the Orient dataset in the testing phase,
which suggests more robustness of the learned model. We find that though the VAE also performs
relatively well in most cases, it cannot learn a good representation of the 3D Circle constraint and
fails to produce any valid sampled points. ECoMaNN, on the other hand, can learn to represent all
four constraints well.

5.2 Ablation study of ECoMaNN

In the ablation study, we compare I, across 7 different ECoMaNN setups: 1) no ablation; 2) with-
out data augmentation; 3) without orthogonal subspace alignment (OSA) during data augmentation;
4) without siamese losses during training; 5) without Liefection; 6) Without Leacion; and 7) without
Lgimilar- Results are reported in Table 2. The data suggest that all parts of the training process are
essential for a high success rate during projection. Of the features tested, data augmentation ap-
pears to have the most impact. This makes sense because without augmented data to train on, any
configuration that does not already lie on the manifold will have undefined output when evaluated
with ECoMaNN. Additionally, results from ablating the individual siamese losses suggest that the
contribution of each is dependent on the context and structure of the constraint. Complementary to
this ablation study, we present some additional experimental results in the Supplementary Material.



Figure 5: The images visualize a path that was planned on a learned orientation manifold.

5.3 Motion planning on learned manifolds

In the final experiment, we integrate ECoMaNN into the sequential mo-
tion planning framework described in Section 3.2. We mix the learned
constraints with analytically defined constraints and evaluate it for two
tasks. The first one is a geometric task, visualized in Figure 4, where a
point starting on a paraboloid in 3D space must find a path to a goal state
on another paraboloid. The paraboloids are connected by a sphere, and
the point is constrained to stay on the surfaces at all times. In this case,
we give the paraboloids analytically to the planner, and use ECoMaNN
to learn the connecting constraint using the Sphere dataset. Figure 4
shows the resulting path where the sphere is represented by a learned
manifold (red line) and where it is represented by the ground-truth man-
ifold (black line). While the paths do not match exactly, both paths are
on the manifold and lead to similar solutions in terms of path lengths.
The task was solved in 27.09s on a 2.2 GHz Intel Core i7 processor.
The tree explored 1117 nodes and the found path consists of 24 nodes.

\A

The second task is a robot pick-and-place task with the additional con-

straint that the transported object needs to be oriented upwards through-

out the whole motion. For this, we use the Orient dataset to learn Figure 4: Plann@d path on
the manifold for the transport phase and combine it with other man- the learned manifold (red)
ifolds that describe the pick and place operation. The planning time and on the ground truth
was 42.97 s, the tree contained 1421 nodes and the optimal path had 22 manifold (black).

nodes. Images of the resulting path are shown in Figure 5.

6 Discussion and conclusion

In this paper, we presented a novel method called Equality Constraint Manifold Neural Network
for learning equality constraint manifolds from data. ECoMaNN works by aligning the row and
null spaces of the local PCA and network Jacobian, which results in approximate learned normal
and tangent spaces of the underlying manifold, suitable for use within a constrained sampling-based
motion planner. In addition, we introduced a method for augmenting a purely on-manifold dataset to
include off-manifold points and several loss functions for training. This improves the robustness of
the learned method while avoiding hand-coding the labels for the augmented points. We also showed
that the learned manifolds can be used in a sequential motion planning framework for constrained
robot tasks.

While our experiments show success in learning a variety of manifolds, there are some limitations to
our method. First, ECoMaNN by design can only learn equality constraints. Although many tasks
can be specified with such constraints, inequality constraints are also an important part of many
robot planning problems. Additionally, because of inherent limitations in learning from data, ECo-
MaNN does not guarantee that a randomly sampled point in configuration space will be projected
successfully onto the learned manifold. This presents challenges in designing asymptotically com-
plete motion planning algorithms, and is an important area of research. In the future, we plan on
further testing ECoMaNN on more complex tasks, and in particular on tasks which are demonstrated
by a human rather than from simulation.
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Supplementary Materials

We provide the following supplementary material to enhance the main paper:

e Orthogonal Subspace Alignment — In Section A, we describe the details of the orthogonal
subspace alignment and provide an algorithm that shows its step-by-step computations.

e Additional Experiments — In order to thoroughly evaluate the components of our ap-
proach, we present some additional experimental results in Section B.

A Orthogonal Subspace Alignment (OSA)

In previous work [41, 42], subspace alignment techniques — without orthogonality constraints — have
been introduced to improve domain adaptation. For the purposes of this paper, we require a subspace
alignment algorithm that preserves orthogonality of the subspaces being aligned, which we present
in this section.

Given a set of orthonormal vectors F = {by,bo,..., by} which spans a space, the matrix
B=1[bi by ... by € R™9belongs to the Orthogonal Group O(d). The Orthogonal Group
has two connected components, where one connected component called the Special Orthogonal
Group SO(d) is characterized by determinant 1, and the other is characterized by determinant —1.
However, if B = [b1 ba ... bg] has determinant 1 (i.e. if B € SO(d)), then substituting by
with its additive inverse (—b;) will resultin B = [-b1 by ... by]with determinant —1. Align-
ing two coordinate frames F“ and JF° to have a common origin and associated basis matrices B,
and B,, respectively, is equivalent to finding an R € SO(d) such that B,R = B.. The solution
to this problem exists if and only if B, and B, come from the same connected component of O(d),
i.e. if either both B,, B. € SO(d) or both determinants of B, and B, are —1.

For a subspace such as the normal space NqM associated with an on-manifold data point q on
M spanned by the eigenvectors Fy = {vg—i+1,...,v4}, the concept of a determinant does not
apply to VN = [vg—i41 ... vgq] € R as it is not a square matrix. However, the nor-
mal space NgM can be described with infinitely-many orthonormal bases Vg, Vi, Vg, ..
Voo Where the set of column vectors of each is an orthonormal basis of NqM. Each of these

is a member of R4*!, Moreover, we can pick the transpose of one of them, for example VNE,
as a projection matrix, and Vy as the inverse projection matrix. Applying the projection oper-
ation to each of the orthonormal bases, we get Wy = VNEVNO = Ijx;, Wni = VNgVNl,
WN2 = VNEVNQ, WNoo = VNgVNoo, and we will show that WNO, Wva WNQ, ey
Wi are members of O(l), which also has two connected components like O(d). To show
this, first note that although VNgVNO = I,4;, the matrix VNOVNg # Igxq. Hence, for any
matrix A € R%*? in general, VNOVNgA # A. However, we will show that VNOVNS’U =
for any vector v in the vector space NqM. Suppose Vg = [b1 ba ... b] € R¥! then
we can write VNOVNE = Z,lizl bisz. Since the collection {by,bs,...,b;} spans the vector
space NgqM, any vector v in this vector space can be expressed as v = 22:1 a;b;. Moreover,
bjv=">b 22:1 a;b; = a; forany i = 1,2, ..., 1, because by definition of orthonormality b} b; = 1
fori = jand blb; = 0 fori # j. Hence, VNoViov = (3, bibD)v = 2\ (blw)b; =
22:1 a;b; = v. Similarly, because the column vectors of Vg, VN1, VN2, -, VNoo are all
inside the vector space NyM, it follows that VngVno Ve = Vno» VNoVNo Vi = Vi,
VNOVNEVNz = Vg, ey VNOVNgVNOO = VNoo- Similarly, it can be shown that VNiVNZTU =
for any vector v in the vector space NgM for any 7 = 0, 1,2, ..., co. Furthermore, WN£WNO =
Vo (Vo Vg Vo) = VngVo = T, WNIWay = Vi (VnoVig Vi) = VN Vi =
Lty . WL Wree = Ve (VnoVgVNee) = Ve Ve = Iix, and WyoWyp =
Vo (Vo Vg Vo) = Vg Vo = L Wi Wi = Vg (Vi Vg Vo) = Ving Vo = L

WrooWrL = Vo (VNeo VNE Vo) = VoVno = i All these show that Wy,

Wi, Wi, ooy W € O(1). Moreover, using Vg as the inverse projection matrix, we get
VNO = VNOWNO, VNl = VNOWNl, VN2 = VNOWN2, VNoo = VNOWNOO‘ Therefore,
there is a one-to-one mapping between Vg, VN1, VN2, --s VNoo and Wxg, Wiy, Wia, ...,
Wi Furthermore, between any two of Vg, VN1, VN2, v VNoo» €8 Vn; and VNj, there
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exists Ry € SO(I) such that Vy;Ry = Vy; if their SO(I) projections Wy; and Wy; both are
members of the same connected component of O(1).

Now, suppose for nearby on-manifold data points q, and q., their approximate normal spaces
Ng,M and Nq M are spanned by eigenvector bases Fg, = {v§_; ,...,v3} and F§ =
{vg_i41,- -, v3}, respectively. Due to the curvature on the manifold M, the normal spaces Nq, M

and Ny, M may intersect, but in general are different subspaces of R*?. For the purpose of align-
ing the basis of Ny, M to the basis of Ny, M, one may think to do projection of the basis vectors
of Ng,M into Ng M. Problematically, this projection may result in a non-orthogonal basis of
Ng, M. Hence, we resort to an iterative method using a differentiable Special Orthogonal Group
SO(1). In particular, we form an [ x [ skew-symmetric matrix L € so(l) with (I — 1)/2 differ-
entiable parameters —where so(l) is the Lie algebra of SO(l), i.e. the set of all skew-symmetric
I x I matrices—, and transform it through a differentiable exponential mapping (or matrix expo-
nential) to get Ry = exp(L) with exp : so(l) — SO(l). With V§ = [v§_;,; ... v§] and
V§ = ['v§7 1 e vg], we can do an iterative training process to minimize the alignment error

between VER v and V, thatis Los, = || L — (V{%,RN)TV,%H;. Depending on whether both W§
and W (which are the projections of Vi and V§, respectively, to O(1)) are members of the same
connected component of O(1) or not, this alignment process may succeed or fail. However, if we
define Vi = [—v§ 111 v o --- v§land VG = [-vi 1 vGn ... v, twoout
of the four pairs (V§&, VR), (V&, VR), (VE&, VR). and (Vg, V) will be pairs in the same con-
nected component. Thus, two of these pairs will achieve minimum alignment errors after training
the differentiable Special Orthogonal Groups SO(!) on these pairs, indicating successful alignment.
These are the main insights for our local alignment of neighboring normal spaces of on-manifold
data points.

For the global alignment of the normal spaces, we represent the on-manifold data points as a graph.
Our Orthogonal Subspace Alignment (OSA) is outlined in Algorithm 1. We begin by constructing
a sparse graph of nearest neighbor connections of each on-manifold data point, followed by the
construction of this graph into an (un-directed) minimum spanning tree (MST), and eventually the
conversion of the MST to a directed acyclic graph (DAG). This graph construction is detailed in
lines 2 - 8 of Algorithm 1.

Each directed edge in the DAG represents a pair of on-manifold data points whose normal spaces
are to be aligned locally. Our insights for the local alignment of neighboring normal spaces are
implemented in lines 9 - 21 of Algorithm 1. In the actual implementation, these local alignment
computations are done as a vectorized computation which is faster than doing it in a for-loop as
presented in Algorithm 1; this for-loop presentation is made only for the sake of clarity. We initialize
the I(I — 1) /2 differentiable parameters of the [ x | skew-symmetric matrix L with near zero random
numbers, which essentially will map to a near identity matrix I;,; of Ry via the exp() mapping, as
stated in line 14 of Algorithm 13. This is reasonable because we assume that most of the neighboring
normal spaces are already/close to being aligned initially. We optimize the alignment of the four
pairs (VE&, V), (VR, VL), (V&, VR%), and (V{, V) in lines 16 - 19 of Algorithm 1.

Once the local alignments are done, the algorithm then traverses the DAG in breadth-first order,
starting from the root 7, where the orientation of the root is already chosen and committed to.
During the breadth-first traversal of the DAG, three things are done: First, the orientation of each
point is chosen based on the minimum alignment loss; second, the local alignment transforms are
compounded/integrated along the path from root to the point; and finally, the (globally) aligned
orthogonal basis of each point is computed and returned as the result of the algorithm. These steps
are represented by lines 22 — 48 of Algorithm 1.

3 Although most of our ECoMaNN implementation is done in PyTorch [43], the OSA algorithm is imple-
mented in TensorFlow [44], because at the time of implementation of the OSA algorithm, PyTorch did not
support the differentiable matrix exponential (i.e. the exponential mapping) computation yet while TensorFlow
did.
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Algorithm 1 Orthogonal Subspace Alignment (OSA)

41:

42:
43:
44:
45:
46:
47:
48:

1:
2:
3
4.
5:
6.
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

function OSA({(q € Cas, orthogonal basis stacked as matrix Vy associated with Nq M) })

# construct a sparse graph between each data point q € Cj; with its H nearest nelghbors

# followed by minimum spanning tree and directed acyclic graph computations

# to obtain directed edges £; H needs to be chosen to be a value as small as possible that

# still results in all non-root points {q € Car\{q, } } being reachable from the root point g
G < computeNearestNeighborsSparseGraph({q € Cps}, H)

T < computeMinimumSpanningTree(G)

& « computeDirectedAcyclicGraphEdgesByBreadthFirstTree(T)

for each directed edge e = (q.,q,) € € do

Obtain V§ = [v5_;,; ... v§] € R™! associated with the source subspace Ng, M
Obtain V§ = [v5_;; ... vg] € R™! associated with the target subspace Ng, M
Define V§ = [—vj_ ;.1 9§ ., ... v§] € R

Define V§ = [—v5_ ;41 v§ 140 .- v§] € R

S

Define differentiable SO(1) Rﬁﬁ, RE?, RE and Ry, ©, initialized near identity
# try optimizing the alignment of the 4 possible pairs:
(RE?7 Lo=2) < iterativelyMinimizeAlignmentError(V{ RE}? V5%)
(Rg%7 Loc) + iterativelyMinimizeAlignmentError(VNRE) <, Vg)
(Rﬁ,?, L) + iterativelyMinimizeAlignmentError(VER g < , VR)
(RE?7 L4) < iterativelyMinimizeAlignmentError( ViR 3 ,VE)
# record optimized local alignment rotation matrices and its associated loss w/ the edge:
Associate (R ¢, Lg=), (RE®, Law), (R, Lg=2), (RYT, Lae) with e
# commit on the orientation of the root point as un-flipped (7) instead of flipped )
ori(r) =
# define the compound/global alignment rotation matrix of the root as an identity matrix:
R =1
# aligned orthogonal basis of the root is:
VNahgned,r — VIT\}
# do breadth-first traversal from root to:
# (1) select the orientation ori() of each point based on the minimum alignment loss,
# (2) compound/integrate the local alignment transforms R along the path to the point,
# (3) and finally compute the aligned orthogonal basis V9"
Q = Queue()
Q.enqueue(childrenOfNodeInGraph(r, £))
while size(Q) > 0 do
d = @Q.dequeue()
Q.enqueue(childrenOfNodeInGraph(d, £))
p = parentOfNodelnGraph(d, £)
# select the local alignment rotation matrix based on the minimum alignment loss
# among the two possibilities:
if ﬁ?om‘( < L then

d ori(p)
ori(d) =
Ré _ Rgom’(p)Rg
VNaligned,d _ VIC\IIR%'
else

%
ori(d) = d
Ré _ R d om(p)Rp
V aligned, d Vde

return {Vf\ﬁ“g”e‘i associated with Ny M for each q € Cys}
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B Additional Experiments

B.1 Learning ECoMaNN on noisy data

We also evaluate ECoMaNN learning on noisy data. We generate a noisy unit sphere dataset and a
noisy 3D unit circle with additive Gaussian noise of zero mean and standard deviation 0.01. After
we train ECoMaNN on these noisy sphere and 3D circle datasets, we evaluate the model and obtain
(82.00 £ 12.83) % and (89.33 + 11.61) %, respectively, as the P metric.* These are still quite
high success rates and outperform the VAE without noise.

B.2 Relationship between the number of augmentation levels and the projection success rate

We also perform an experiment to study the relationship between the number of augmentation levels
(the maximum value of the positive integer ¢ in the off-manifold points q = q + ieu) and the pro-
jection success rate. As we vary this parameter at 1, 2, 3, and 7 on the Sphere dataset, the projection
success rates are (5.00 + 2.83) %, (12.33 £+ 9.03) %, (83.67 + 19.01) %, and (97.33 + 3.77) %,
respectively, showing that the projection success rate improves as the number of augmentation levels
are increased. Increasing this parameter too high, however, would eventually have two problems:
First, we empirically found data augmentation to be a computationally expensive step in training,
and second, it would be possible to run into an issue like augmenting a point on a sphere beyond the
center of a sphere (as mentioned in section 4.2).

“The small positive scalar e needs to be chosen sufficiently large as compared to the noise level, so that the
data augmentation will not create inconsistent data w.r.t. the noise.

14



	Introduction
	Related work
	Manifold learning
	Learning from demonstration
	Constrained sampling-based motion planning

	Background
	Manifold theory
	Motion planning on manifolds

	Equality Constraint Manifold Neural Network (ECoMaNN)
	Alignment of local tangent and normal spaces
	Data augmentation with off-manifold data
	Training losses


	Experiments
	Accuracy and precision of learned manifolds
	Ablation study of ECoMaNN
	Motion planning on learned manifolds

	Discussion and conclusion
	Orthogonal Subspace Alignment (OSA)
	Additional Experiments
	Learning ECoMaNN on noisy data
	Relationship between the number of augmentation levels and the projection success rate


