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1 Introduction

In recent years, there has been an increasing focus on the development of robot
platforms that can be deployed in swarms to perform tasks autonomously over large
spatial and temporal scales. In addition, swarms of nanoscale structures and devices
such as nanoparticles, molecular machines, and magnetic nanocarriers are being
developed for biomedical applications such as imaging and targeted drug delivery
[21]. Many potential applications for robotic swarms, including exploration, environ-
mental monitoring, disaster response, search-and-rescue, mining, and intelligence-
surveillance-reconnaissance, will require the robots to operate in dynamic, uncertain
environments. Moreover, the robots’ highly restricted onboard power may preclude
the use of GPS and communication devices, or the robots may be located in GPS-
denied environments where communication is impractical or unreliable. Despite
these limitations, it may still be necessary for the swarm to characterize its surround-
ings, for instance to map obstacles, target payloads, or hazardous areas to avoid.
Nanoscale swarms, which will have extremely limited capabilities, may be used to
map cellular structures inside the human body.

To address these challenges, we present a method formapping a feature of interest
in an unknown environment using a swarm of robots with local sensing capabilities,
no localization, and no inter-robot communication. We consider scenarios where the
robots exhibit significant randomness in their motion due to sensor and actuator noise
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or, at the nanoscale, the effects of Brownian motion and chemical interactions. Our
mapping approach is scalable with the number of robots, so that arbitrary swarm
populations can be used.

Our method relies on developing a continuous abstraction of the swarm population
dynamics in the form of an advection-diffusion-reaction PDE model, which we call
the macroscopic model. This model describes the spatial and temporal evolution
of the population densities of robots in different states throughout the domain. To
represent individual robots, we define a microscopic model that describes how each
robot moves and responds upon encountering a feature of interest. The state transition
of a robot is modeled as a irreversible chemical reaction with a high reaction rate.
The macroscopic model becomes a more accurate model of the microscopic model
as the number of robots increases.

We pose our mapping problem as the computation of a spatially varying function
that represents the map of the feature of interest. To estimate this function, we use
temporal data that is recorded by the robots during their exploration of the envi-
ronment. This data yields the time evolution of the number of robots that are still
exploring the domain; i.e., robots that have not encountered the feature. In practice,
this data could be collected from the robots after their deployment by retrieving their
recorded times of encounter with the feature. In biomedical imaging applications
with nanoscale swarms, this data could be obtained from a measurable signal that
corresponds to the density of the population that is still in the exploring state.

Once this data is obtained, we use techniques from optimal control to compute
the function that represents the feature map. In general, optimal control entails the
minimization or maximization of an objective functional that is defined in a finite-
dimensional space and is subject to a set of ordinary or partial differential constraint
equations, which govern the system of interest. From a computational perspective,
optimal control methods are more effective than black box techniques, such as genetic
algorithms and particle swarm optimization, in terms of the number of objective func-
tional evaluations per cycle. This computational advantage mainly arises from their
use of the problem structure to calculate the gradient of the control-to-state maps
using the adjoint equation. The feature map is defined as the solution of an opti-
mization problem that minimizes an objective functional which is based on the robot
data. This optimization problem is solved numerically offline using standard tech-
niques such as gradient descent algorithms. We validate our approach in simulation
for features of varying shape, size, orientation, and location.

1.1 Related Work

In the literature, there have been exhaustive studies on mapping and exploring an
environment using robots. SLAM (simultaneous localization and mapping) [16, 18],
probabilistic mapping [3, 19], and topological and metric map building [15, 20]
are some of the techniques that have been developed for environmental mapping by
robots. These techniques have been used for path planning and mapping in small
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multi-robot groups. However, the problem of scaling these approaches to larger
groups becomes intractable for swarms of hundreds or thousands of robots, due to
their limitations on communication bandwidth and their spatially distributed nature.
In addition, these techniques require the robots to have sophisticated sensing and
processing capabilities, which are not feasible in swarm robotic platforms.

Mapping an environment using a robotic swarm is a relatively new area of research
in the robotics community. An approach to this problem is given in [6, 7], in which
a robotic swarm is used to identify the topological features of an environment from
information about the times at which robots encounter other robots and environmental
features. This work borrows tools from algebraic geometry and topological data
analysis to compute a metric that can be used to classify the topological structure of
the environment. The approach requires some minimal inter-robot communication,
unlike our strategy which is communication-free.

Our mapping approach uses methods from [9], a stochastic task allocation
approach that achieves target spatial distributions of robot activity without using
communication or localization. Also, our approach is inspired by [13], a method for
reconstructing environmental features from minimal robot data using compressed
sensing techniques. In contrast to the scenarios that we consider, the robots in [9, 13]
can move over the features to be mapped, which allows the mapping problem to be
formulated as the inversion of a linear operator. Approaches with a similar mathe-
matical framework for parameter estimation have been used extensively in the area of
biomedical imaging, especially with MRI and CT scan images. In these approaches,
the system is excited with a stimulus such as a magnetic field, X-rays, or ultrasound,
and the system response is used to identify and estimate a spatially-dependent para-
meter that corresponds to the image [1, 17, 23].

2 Problem Statement

We consider a scenario in which N robots are deployed into an unknown, bounded
environment to map a single feature of interest. We exclude cases in which the
feature is located very close to the domain boundary, since robot collisions with this
boundary and the high diffusion of swarms that start far from the feature will degrade
the estimation. If a robot encounters the feature, it stops moving and records the time
at which it stopped. Using data on the number of robots that are still moving at each
instant, we aim to estimate the position and geometry of the encountered feature.
We can improve the accuracy of this estimate by deploying the swarm in different
directions from various locations, which will ensure greater coverage of the domain
and result in robot collisions with a larger portion of the feature boundary. This
approach may be used to map multiple sparsely distributed features by reconstructing
each individual feature from its corresponding data set and computing the entire map
as a linear combination of single-feature maps.
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Robot capabilities: The robots are assumed have sufficient power to complete the
mapping operation. The power requirement for the robots is low, since they are
not equipped with communication devices or GPS. The robots have local sensing
capabilities and can identify the feature at distances within their sensing range.
We may also assume that the robots can detect other robots within their sensing
range and perform collision avoidance maneuvers, although we do not simulate
collision avoidance in this work. Each robot is equipped with a compass and thus
can move in a specified heading. Additionally, the robots have sufficient memory
to store the time of their encounter with the feature.

Robot controller: The robots begin at a specified location in the domain. Dur-
ing a swarm deployment, the robots move with a predetermined time-dependent
velocity, v(t) ∈ R

2. This velocity is designed to guide the center of mass of the
swarm along a desired trajectory through the environment. The velocity field may
be initially transmitted to the robots by a computer at their starting location, or
the robots may be directed according to the field using external stimuli such as
magnetic fields or radiation. The robots’ motion is affected appreciably by sensor
and actuator noise, due to lack of feedback. If a robot detects a feature within its
sensing range, it stops moving and records the time. At a predefined time t f , the
stationary robots around the feature boundary return to the starting point of the
deployment and upload their encounter times to a computer. The computer then
applies the optimal control method described in Sect. 4 to estimate the map of the
feature using this robot data.

3 Models of the Mapping Scenario

3.1 Microscopic Model

This model is used to simulate a robot’s motion and its response to an encounter with
a feature in its path. The change in a robot’s state that is triggered by an encounter is
modeled as an irreversible chemical reaction,

A
k−→ P, (1)

where the species A represents an active (moving) robot, P represents a passive
(stationary) robot, and k is the reaction rate constant, which in this case is a fixed
probability per unit time. This constant is assigned a high value to enforce a high
probability of transitioning from active to passive.

We model the robots as point masses with negligible size compared to the area
of the domain. A particular robot i has position Xi (t) = [xi (t) yi (t)]T at time t . The
deterministic motion of the robot is directed by the time-dependent velocity field
v(t) = [vx (t) vy(t)]T . The noise in the robot movement is modeled as a Brownian
motion that drives diffusion with an associated diffusion coefficient D. We assume
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that the robots’ navigation error can be modeled as diffusive noise and that the value
of D can be estimated. The displacement of robot i over a time step Δt is given by
the standard-form Langevin equation [11]:

Xi (t + Δt) = Xi (t) + (
√

2DΔt)Z(t) + v(t)Δt, (2)

where Z(t) ∈ R
2 is a vector of independent standard normal random variables that

are generated at time t . The robots avoid collisions with the domain boundary by
performing a specular reflection when they encounter this boundary.

3.2 Macroscopic Model

The macroscopic model governs the time evolution of the expected spatial distribu-
tion of the robotic swarm. For a swarm whose members move according to Eq. (2),
the macroscopic model is given by an advection-diffusion PDE, as described in [5].
Since our microscopic model includes robot state changes that can be represented as
chemical reactions, our macroscopic model takes the form of an advection-diffusion-
reaction (ADR) PDE. The model is defined over a domain Ω ⊂ R

2 with Lipschitz
continuous boundary ∂Ω and over a time interval T . We define L = Ω × [0, T ] and
Γ = ∂Ω × [0, T ]. The state of the macroscopic model is the population density field
u(x, t) of active robots in the domain at points x ∈ Ω and times t ∈ T . We specify
a spatially varying indicator function, K (x) : Ω → {0, 1}, that equals 0 at points
x where the feature of interest is absent and equals 1 at points where it is present.
The reaction term of the macroscopic model is determined by the rate constant k
in Eq. (1), which is switched on or off by the indicator function K (x) depending
on whether the feature of interest occupies point x. This term models the switching
of individual robots from the active state to the passive state when they are in the
vicinity of the feature. The advection term of the macroscopic model is governed by
the velocity field v(t) that is defined in the microscopic model.

From the above definition, the macroscopic model is given by:

∂u

∂t
= ∇ · (D∇u − v(t)u) − kK (x)u in L (3)

with the no-flux boundary condition

n · (D∇u − v(t)u) = 0 on Γ, (4)

where n ∈ R
2 is the outward normal of the boundary ∂Ω . We specify that all robots

start in the active state and set the initial condition,

u(x, 0) = u0, (5)
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to a Gaussian density centered at a point x0, which we assume is far from the fea-
ture. The macroscopic model is numerically solved using the explicit finite-volume
method that is described in [9].

Our approach relies on the close correspondence of the macroscopic model solu-
tion to the average swarm density over an ensemble of microscopic model simula-
tions. Therefore, the approach is robust to robot malfunctions and external distur-
bances as long as these factors do not significantly affect the model correspondence.
This implies that the number of failed robots should be small compared to the total
swarm size, and that the robots’ trajectory drift due to wind, currents, and other envi-
ronmental influences should be small relative to their modeled motion. In scenarios
that violate these conditions, it would be necessary to improve the accuracy of the
macroscopic model by estimating the components of v, D, and k that are affected by
unmodeled dynamics and disturbances. This is a topic of future work.

4 Optimal Control Approach to Mapping Features

The feature reconstruction problem is framed as an optimal control problem. A
gradient descent algorithm is used to compute the optimal control for the problem.
An adjoint state equation approach is used to compute the gradient required for the
algorithm [4]. The key advantage of this approach is that it derives an explicit formula
for the gradient of the objective functional with respect to the control, subject to the
constraints. The Hamiltonian and Pontryagin maximum principle can be to used to
derive the adjoint equation for finite-dimensional systems. However, in the case of
infinite-dimensional systems, the existence of the Hamiltonian has been proven only
for a limited class of systems [10]. This motivated us to derive the directional directive
of the control-to-state mapping and use the generalized chain rule of differentiation
of composite mappings in Banach spaces, as is found in the literature [2, 22]. In
order to make the derivatives of certain maps well-defined, an appropriate choice
of spaces is made for the parameters and the solutions satisfying the system of
differential equations. We present a Lagrangian-based analysis of these derivatives
in the Appendices. The proof for the existence of optimal control for the problem is
the same as the one shown in [8].

The optimization procedure uses data on the ratio of the number of active robots
at each instant of time to the initial number of active robots at the start of the swarm
deployment. To ensure sufficient coverage of the domain, the swarm can be deployed
from multiple starting positions and directed along different trajectories. Once this
data is obtained, the optimization procedure is performed to find the feature map
that would produce data that is similar to the data obtained from the deployments.
The computational cost increases greatly with the number of data sets (one from
each deployment) that are used for optimization, since the number of PDEs to be
solved per iteration varies linearly with the data sets. However, we can obtain a better
estimate of the feature map with more data. Hence, there is a tradeoff between the
computational cost of the optimization and the accuracy of the estimate. In order
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to resolve this issue, we discard data sets from deployments in which few robots
undergo a state transition compared to the other deployments. A paucity of state
transitions indicates that the swarm trajectories infrequently intersect the feature. In
addition, our procedure can be easily parallelized since the most computationally
intensive part is the solution of the PDEs.

The optimal control problem is formulated as follows. Each of the i swarm
deployments yields a sequence of times at which active robots encounter the fea-
ture and switch to the passive state. From this data, we can determine the fraction
gi (t) ∈ L2([0, T ]) of active robots in the swarm at each time t during deployment
i . The solution ui (x, t) of the corresponding macroscopic model Eqs. (3)–(5) can be
used to compute the integral

∫
Ω
ui (x, t)dx, the expected fraction of active robots

in the domain at time t . We assume that the swarm size is sufficiently large for
gi (t) to closely match this integral if the feature map, represented by the function
K (x) in Eq. (3), is known. Therefore, we can frame our optimization objective as the
computation of the input K (x) that minimizes the function

Ji (ui ) = 1

2

∥
∥
∥
∥

∫

Ω

ui (x, t)dx − gi (t)

∥
∥
∥
∥

2

L2([0,T ])
. (6)

Suppose that the data from N deployments are selected to compute the optimal
controls. The swarm velocity and initial distribution for deployment i are given by
vi (t) and ui0, respectively. The macroscopic model with these parameters is con-
sidered to be the i th set of constraints, which we denote by Ψi (ui , K ) as in [22].
The solution to this model is given by ui , and the set of solutions for all N deploy-
ments is u := {u1, u2, . . . , ui , . . . , uN }. We define the space of macroscopic model
solutions as U = C([0, T ]; L2(Ω)) and the space of admissible input functions as
Θad = {K (x) ∈ L2(Ω); Kmin ≤ K (x) ≤ Kmax }. Furthermore, Wi is a weight that
quantifies the significance of the data from deployment i relative to data from the
other deployments, and λ is the Tikhonov regularization parameter [14]. Using these
definitions, we can frame the optimal control problem as:

min
(u,K (x))∈UN×Θad

J(u, K ) =
N∑

i=1

Wi Ji (ui ) + λ

2
‖K (x)‖2

L2(Ω), (7)

subject to the constraints Ψi (ui , K ), i = 1, . . . , N .
We must compute the gradient of the objective functional J(u, K ) with respect

to the control inputs in order to perform the gradient descent algorithm for mini-
mizing this functional. We introduce the Lagrangian functional L and Lagrangian
multipliers pi , with p := {p1, p2, . . . , pi , . . . , pN }:

L (u,p, K ) = J(u, K ) +
N∑

i=1

〈pi , Ψi (ui , K )〉. (8)
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The functions pi , also known as the adjoint variables, express the sensitivity of the
objective functional to variations in the input control variable K (x). The necessary
condition for optimality is ∇L = 0, which implies the following three conditions:
(1) ∇uL = 0, the adjoint equation; (2) ∇pL = 0, the state equation in weak form;
and (3) ∇KL = 0, the optimal control constraint. These three equations are used to
compute the gradient of J(u, K ). The derivation of the adjoint and gradient equations
is described in the Appendices.

The solution to an optimization problem that is obtained by a gradient descent
algorithm is sensitive to the choice of the initial guess and may be a local minimum of
the objective functional rather than the global minimum. To increase the likelihood
of obtaining the global minimum, we choose an initial guess for the feature map,
represented by K (x), that is guaranteed to include the actual map. This initial guess
is that the feature covers the entire area traversed by the swarm during each of its i
deployments (in actuality, the feature will occupy a subset of this area). Formally,
we define γi := [0, 1] → R

2 as the trajectory of the swarm center during the i th

deployment and B2(γi (τ ), δ) as a ball with radius δ centered at the point γi (τ ), and
we initially set K (x) = 1 for all x ∈ (∪N

i=1B2(γi (τ ), δ)
) ∩ Ω , τ ∈ [0, 1]. We choose

δ to be 3 times the standard deviation of the initial Gaussian swarm distribution.

5 Simulated Mapping Scenarios

We developed microscopic and macroscopic models of a robotic swarm for six map-
ping scenarios, each with a single feature in the domain. The six features varied in
position, size, shape, and orientation. We applied the method described in Sect. 4 to
reconstruct each feature from the simulated robot data on feature encounter times.
For each simulation, we used a swarm of 1000 robots in a normalized domain of
size 1 m × 1 m. The value of k was chosen to be 1/dt , where dt is the time step of
the microscopic model, in order to ensure that robots always switched to the passive
state when they encountered the feature boundary. For simplicity, the designated
velocity fields vi (t) of the robots were each assigned a constant heading. The robots
moved at a speed of 0.012 m/s with a diffusion coefficient of D = 5 × 10−4 m2/s,
and each simulation ran for 80 s. The microscopic model was simulated in a 26 × 26
grid, while the macroscopic model was solved in a finer grid of 51 × 51 grid cells to
account for numerical diffusion. In the optimization procedure, K (x) was bounded
between Kmin = 0 and Kmax = 1.

Figure 1 shows snapshots of the active robots in a swarm at various times t during
a sample deployment. The robots behave according to the microscopic model and
move through a domain that contains a rectangular feature. Robots that have switched
to the passive state are not shown. The population of active robots decreases as the
robots move eastward and encounter the feature in their path.

Figures 2, 3, 4, 5, 6, 7, 8 and 9 illustrate the results of our mapping procedure for
the six scenarios that we investigated. Each figure shows the actual feature, the map
of the feature given by the estimated K (x), and the error between these two plots.
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Fig. 1 Snapshots of the simulated swarm moving through a domain with a rectangular feature
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Fig. 2 K (x) estimated from 6 data sets for a domain that contains a rectangle. The white arrows
show the starting locations and directions of the swarm deployments
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Fig. 3 K (x) estimated from 6 data sets for a domain that contains an inclined rectangle
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Fig. 4 K (x) estimated from 6 data sets for a domain that contains a triangle
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Fig. 5 K (x) estimated from 4 data sets for a domain that contains a square at the center
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Fig. 6 K (x) estimated from 8 data sets for a domain that contains a square at the center
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Fig. 7 K (x) estimated from 8 data sets for a domain that contains a square in the corner
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Fig. 8 K (x) estimated from 6 data sets for a domain that contains a non-convex L-shaped object



An Optimal Control Approach to Mapping GPS-Denied Environments … 487

0 2 4 6 8 10 12 14 16 18 200

200

400

600

800

1000

1200

Number of Iterations

O
bj

ec
tio

n 
fu

nc
tio

n

Center Square (8 data sets)
Corner Square
Rectangle
Inclined Rectangle
L Shape
Triangle

Fig. 9 Objective function value versus number of iterations for the different scenarios examined

In the plots of the actual features, the white arrows indicate the starting points and
directions of the swarm center of mass during deployments, each of which yields
one data set. Figures 2, 3, and 4 show that we can obtain a fairly accurate map of
a rectangle at two different orientations and a triangle using 6 data sets for each
scenario. We consider smaller features in the next three figures. From Figs. 5 and 6,
we see that the map of a feature increases in accuracy when more non-redundant data
sets are used in the optimization procedure. Figure 7 represents a worst-case scenario,
in which the map is estimated using data from swarms that start at locations far from
the feature, which is in one corner of the domain. The swarms are highly diffused by
the time they reach the vicinity of the square; however, 8 data sets yield a relatively
accurate map. Lastly, Fig. 8 shows that 6 data sets yield a fairly poor estimate of a
non-convex L-shaped feature; we will work further on extending our technique to
mapping non-convex shapes. Figure 9 shows that for each scenario considered, the
optimal control approach effectively minimizes the objective function by driving it
close to zero from its initial value.

6 Conclusion

We have presented a method for mapping an environmental feature using a robotic
swarm that exhibits diffusive motion and lacks localization and inter-robot commu-
nication. Our approach employs optimal control techniques to reconstruct a spatially
varying function that represents the feature of interest. This function is estimated
using temporal data on the proportion of active robots, which have not encountered
the feature, at each instant of time. Our simulation results indicate that this method-
ology can accurately reconstruct the feature when the data is obtained from multiple
swarm deployments that originate at different locations throughout the domain.

In future work, we would like to extend this approach to more accurately recon-
struct non-convex shapes, as well as multiple features in a domain. Our mathematical
framework can in principle be used to reconstruct an arbitrary feature geometry, pro-
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vided that we can design swarm trajectories that yield robot interactions with all
facets of the feature. In general, however, it is impossible to identify trajectories
a priori that can produce sufficient data for accurate reconstruction. This limitation
makes it difficult to map complex feature geometries, as illustrated by Fig. 8. Another
factor that contributes to mapping inaccuracies is the decrease in number of active
robots during a swarm deployment, which can reduce the correspondence between
the density fields of active robots from the macroscopic and microscopic models.
This issue could be resolved if the robots perform an obstacle avoidance maneuver
upon encountering a feature, staying in the active state rather than entering the pas-
sive state. The corresponding macroscopic PDE would need to model this avoidance
behavior, which would increase the complexity of computing the gradient of the
objective functional. In addition, we plan to implement our mapping approach as the
initial step in other swarm strategies, such as collective transport tasks [24] that first
require estimating the location and geometry of the payload.

Acknowledgements This work was supported by NSF Awards CMMI-1363499 and CMMI-
1436960.

Appendix 1: Mathematical Preliminaries

We study the solution to PDEs in the weak sense, which can be found in the

Sobolev space H 1(Ω) =
{
y ∈ L2(Ω) : ∂y

∂x1
∈ L2(Ω),

∂y
∂x2

∈ L2(Ω)
}

. Here, the

spatial derivative is to be understood as a weak derivative defined in the dis-
tributional sense. The space is equipped with the common Sobolev space norm,

‖y‖H 1(Ω) =
√(

‖y‖2
L2(Ω) + ∑2

i=1

∥
∥
∥ ∂y

∂xi

∥
∥
∥

2

L2(Ω)

)

. We also define V = H 1(Ω), which

has the dual space V ∗ = H 1(Ω)∗.
We consider the general system for Eqs. (3)–(5):

∂u

∂t
= Au +

2∑

i=1

vi Biu − K (x)u + f in L ,

n · (D∇u − vu) = g on Γ,

u(x, 0) = u0, (9)

where A is a formal operator and Bi is an operator defined as Bi : L2(0, T ; V ) →
L2(0, T ; L2(Ω)), K (x) ∈ L2(Ω), f ∈ F = L2(0, T ; L2(Ω)) is the forcing function
in the system, g ∈ G = L2(0, T ; L2(∂Ω)), and u0 ∈ L2(Ω). The variational form
of the operator A, called Ag , is defined as Ag : L2(0, T ; V ) → L2(0, T ; V ∗). The
solution of the system in the weak sense is given by u ∈ U = L2(0, T ; V ) with
ut ∈ U ∗ = L2(0, T ; V ∗) if it satisfies the equation:
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〈
∂u

∂t
, φ

〉

U ∗,U
= 〈

Ag, φ
〉
U ∗,U +

2∑

i=1

〈vi Biu, φ〉F − 〈K (x)u, φ〉F + 〈 f, φ〉F (10)

for all φ ∈ L2(0, T ; V ). The boundary conditions are equipped with Ag in the vari-
ational formulation using Green’s theorem. This is essentially the variational form
of the Laplacian,

〈
Agu, φ

〉
U ∗,U = −〈D∇u,∇φ〉L2(Ω) +

∫

∂Ω

(g + n · vu) φdx . (11)

In the macroscopic model Eqs. (3)–(5), we define A = ∇2, Bi = ∂
∂xi

, f = 0, and
g = 0.

Appendix 2: Adjoint Equations

The adjoint equation ∇uL = 0 implies that [∇u1L , . . . ,∇uiL , . . . ,∇uNL ] = 0.

From Eq. (8),

∇uiL = ∇uiJ(u, K ) + ∇ui

N∑

j=1

〈p j , Ψ j (u j , K )〉

= ∇uiJ(ui , K ) + ∇ui 〈pi , Ψi (ui , K )〉, (12)

since a term in the sum is a function of ui only when i = j . By Eq. (7),

∇uiJ(ui , K ) = ∇ui

N∑

j=1

Wj Jj (u j ) = Wi∇ui Ji (ui ). (13)

From Eq. (6),

∇ui Ji (ui ) = ∇ui

(
1

2
‖(Dui )(t) − gi (t)‖2

L2([0,T ])

)

, (14)

where D := U → L2([0, T ]) and (Dui )(t) = ∫
Ω
ui (x, t)dx. Then, by the chain rule

of differentiation [4, 12], the directional derivative of Ji (ui ), ∇ui Ji (ui ), is given by

〈∇ui Ji (ui ), s〉U = 〈(Dui )(t) − gi (t), Ds〉L2([0,T ]) = 〈D∗((Dui )(t) − gi (t)), s〉U .

(15)
Here, D∗ := L2([0, T ]) → U and (D∗ f )(t) = f (t) · 1Ω(x), where f (t) ∈
L2([0, T ]) and 1Ω is the indicator function of Ω ⊂ R

2. We can show that 〈Dy, f 〉 =
〈y, D∗ f 〉 ∀y ∈ U, f ∈ L2([0, T ]). Therefore,



490 R.K. Ramachandran et al.

∇ui Ji (ui ) = D∗((Dui )(t) − gi (t)). (16)

By definition,

〈pi ,∇ui Ψi (ui , K )s〉 = 〈∇ui Ψi (ui , K )∗ pi , s〉 ∀s ∈ U, (17)

where ∇ui Ψi (ui , K )∗ is the adjoint operator of ∇ui Ψi (ui , K ) corresponding to the
inner product of the Hilbert space. Now, by taking the directional derivative of
Ψi (ui , K ) at ui in the direction of s, we obtain

∇ui Ψi (ui , K )s = ∂s

∂t
− (∇ · (D∇s − vi (t)s) − kK (x)s). (18)

Substituting Eq. (18) into Eq. (17) yields

〈pi , ∇ui Ψi (ui , K )s〉 =
∫ T

0
〈pi , ∂s

∂t
〉L2(Ω) − 〈pi , D∇2s〉 + 〈pi ,∇ · vi (t)s〉 + 〈pi , kK (x)s〉.

Using integration by parts on the integral term in the equation above, we get

∫ T

0
〈pi , ∂s

∂t
〉L2(Ω) = 〈pi (T ), s(T )〉 − 〈pi (0), s(0)〉 −

∫ T

0
〈s, ∂pi

∂t
〉L2(Ω).

As this is true for all s ∈ U , we could choose the s with s(0) = 0 and construct pi (T )

such that
∫ T

0 〈pi , ∂s
∂t 〉L2(Ω) = ∫ T

0 〈− ∂pi
∂t , s〉L2(Ω). Thus, we choose the final condition

of the adjoint equation as pi (T ) = 0. We now make use of the following lemma:

Lemma 1 Let L and L∗ be operators defined by L : L2(0, T ; V ) → L2(0, T ; V ∗)
and L∗ : L2(0, T ; V ) → L2(0, T ; V ∗), respectively. The variational form of L is:

〈Lu, φ〉V ∗,V = −〈D∇u,∇φ〉L2(Ω) − 〈v · ∇u, φ〉L2(Ω) +
∫

∂Ω

n · (vuφ)dx

∀φ ∈ V . Also, by Lagrange’s identity, 〈Lu, p〉V ∗,V = 〈u, L∗ p〉V,V ∗ ∀u, p ∈
L2(0, T ; V ). We use the zero-flux boundary condition in Eq. (4) to compute the
variational form of the operator L∗ to be 〈L∗ p, φ〉V ∗,V = −〈D∇ p,∇φ〉L2(Ω) +
〈v · ∇ p, φ〉L2(Ω) ∀p ∈ L2(0, T ; V ) and ∀φ ∈ V .

Using the variational form of the Laplacian as in Eq. (11) and applying Lemma 1
and integration by parts, we can show that −〈pi , D∇2s〉 + 〈pi ,∇ · vi (t)s〉 can be
transformed into − 〈D∇2 pi , s〉 − 〈∇ · vi (t)pi , s〉 with the boundary condition n ·
∇ pi = 0. Finally, we observe that 〈pi , K (x)s〉 = 〈pi K (x), s〉. By combining these
results with Eqs. (12), (15), and (17), we obtain

〈∇ui Ji (ui ), s〉 + 〈−∂pi
∂t

− D∇2 pi − ∇ · vi (t)pi + pikK (x), s〉 = 0.
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Thus, the set of adjoint equations for the system defined by the i th set of constraints,
Ψi (ui , K ), with respect to the objective functional, J, is given by

− ∂pi
∂t

= ∇ · (D∇ pi + vi (t)pi ) − pikK (x) − ∇ui Ji (ui ) in L (19)

with the Neumann boundary conditions

n · ∇ pi = 0 on Γ, pi (T ) = 0, i = 1, . . . , N . (20)

Here, Eq. (19) with Eq. (20) has a solution in the weak sense.

Appendix 3: Gradient Equation

Using a similar analysis to the one in Appendix 2, we find that ∇KL reduces to

∇KL = ∇KJ(u, K ) +
N∑

i=1

∇K 〈pi , Ψi (ui , K )〉. (21)

From Eq. (7), we can derive the following expressions:

∇KJ(u, K ) = ∇K
λ

2
‖K (x)‖2

L2(Ω), 〈∇KJ(u, K ), s〉 = 〈λK (x), s〉. (22)

As in Appendix 2, we could express 〈pi ,∇KΨi (ui , K )s〉 as 〈∇KΨi (ui , K )∗ pi , s〉 ∀s ∈
L2(Ω), where ∇KΨi (ui , K )∗ is the adjoint operator of ∇KΨi (ui , K ) corresponding
to the inner product of the Hilbert space. Now, by taking the directional derivative of
Ψi (ui , K ) at K in the direction of s, we find that ∇KΨi (ui , K )s = kui s. Therefore,
with further simplification, we can show that

〈∇KΨi (ui , K )∗ pi , s〉 = 〈(Ξ(kui pi ))(x), s〉L2(Ω), (23)

where Ξ := L2(0, T ;Ω) → L2(Ω) and (Ξ f )(x) = ∫ T
0 f dt for all f ∈

L2([0, T ];Ω) and x ∈ Ω . By combining Eqs. (21)–(23), we formulate the objec-
tive functional derivative as

J′ =
N∑

i=1

(Ξ(kui pi ))(x) + λK (x). (24)

Thus, the computation of J′ requires ui and pi , which can be obtained by solving
Ψi (ui , K ) forward and solving Eqs. (19), (20) backward.
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