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Resilient Multi-Robot Multi-Target Tracking
Ragesh K. Ramachandran1, Nicole Fronda2, James A. Preiss1, Zhenghao Dai1 and Gaurav S. Sukhatme1,3

Abstract—We address the problem of ensuring resource avail-
ability in a networked multi-robot system performing distributed
target tracking. Specifically, we consider a multi-target tracking
scenario where the targets are driven by exogenous inputs that
are unknown to the robots performing the tracking task. Robots
track the positions of targets using a form of the Distributed
Kalman Filter (DKF). We use the trace of each robot’s sensor
measurement noise covariance matrix as a measure of its sensing
quality. When a robot’s sensing quality deteriorates, the team’s
communication graph is modified by adding edges such that the
robot with deteriorating sensor quality may share information
with other robots to improve the team’s target tracking ability.
This computation is performed centrally and is designed to
work without a large change in the number of active inter-robot
communication links. Our method generates coordinates for the
robots such the new communication graph can be realized in
3D. To achieve this, we propose two mixed integer semi-definite
programming formulations, namely an ‘agent-centric’ strategy
and a ‘team-centric’ strategy. We implement both formulations
and a greedy, baseline strategy in simulation. Our simulation
results show that the team-centric approach outperforms both
agent-centric and greedy methods. Additionally, we show the
effectiveness of our method in real-world settings through a multi-
robot experiment performed in real-time.

Note to Practitioners—This paper is motivated by the need
to track multiple targets by means of a multi-robot team. When
robots in the team experience degradation in their sensing quality
our method reconfigures the team’s communication graph by
repositioning robots. This allows the robot with deteriorated
sensing quality to benefit from sensor measurements from its
neighbors. In previous work, we solved this problem under
the strong assumption the targets moved under inputs that
were known to the tracking team. In this paper we remove
this assumption. Our experiments show comparable tracking
accuracy for both settings, suggesting that this strong assumption
is not always necessary for good tracking results. Our method
is straightforward to implement in Python using off-the-shelf
optimization solvers. We assume that the team performs target
tracking using a distributed algorithm, but has access to a
powerful centralized base station to solve the computationally
expensive underlying optimization problems. Developing a fully
decentralized method and finding better ways to solve the
underlying optimization problems are potential directions for
future work.

Index Terms—Multi robot system, resilience, distributed multi-
target tracking
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I. INTRODUCTION

MULTI-TARGET tracking plays a central role in many
civilian and military applications such as autonomous

driving, disaster response, convoy protection etc.. Tracking
multiple targets using a robot team is potentially attractive for
scalability [1]. As a result, there has been burgeoning interest
in the multi-robot multi-target tracking problems [2]–[5]. In
a multi-robot setting, even though each robot may be limited
in terms of sensing, computational capabilities and field of
view of the environment, the target tracking task could be
performed collaboratively by exchanging information among
team members. A necessary condition for this is the existence
of an underlying communication network. Collaborative dis-
tributed tracking avoids the need for a central data fusion
center entrusted with the task of combining data collected
from individual robots to estimate the states of the targets. A
common approach for distributed multi-robot target tracking is
the distributed Kalman filter [3]; we adopt this method in our
work. We envision a scenario in which a team of robots tracks
and estimates the state of a constant number of targets in an
environment. We assume that each tracker robot is equipped
with a single sensor allowing it to uniquely and distinctively
identify all targets in its field of view. Measurements from the
sensor on each tracker robot constitute the inputs to a distributed
Kalman filter (DKF). The performance of each tracker robot is
determined using a metric that quantifies its ability to obtain
accurate measurements from its sensor - specifically, we use
the trace of the sensor’s measurement noise covariance matrix
as a measure. A tracker robot’s performance is considered
to be reduced if the trace of its sensor measurement noise
covariance matrix increases. The robot team is monitored by
a base station which intervenes in the team’s activities only
when the performance of a robot in the team is reduced. We
focus on strategies to mitigate the effect of a robot’s sensor
quality deterioration on the team’s overall tracking performance
by modifying the topology of the underlying communication
network and target state measurement fusion weights. Figure 1
illustrates the settings discussed in the paper.

In a control theoretic sense, the state estimation error
of the DKF depends upon the observability properties of
the underlying communication network [6]. Significant prior
research has gone into understanding and quantifying the
effect of network topology on a network’s observability
properties [7]–[9]. These findings inspired us to investigate
the idea of employing network reconfiguration to mitigate the
effect of sensor quality deterioration on multi-target tracking
performance.

This article builds on the abstract framework developed
in [10] by adapting it to multi-robot target tracking. Similar
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Fig. 1: Reconfiguration of communication network topology in a multi-target tracking scenario. (Left) One of the tracker robots
in the team experiences a sensor fault due to external environmental factors, thereby affecting the team’s overall tracking
performance. The base station (which monitors the team) generates a new communication graph for the robots and commands
the tracker robots to reconfigure themselves according to the new communication graph. (Right) The team has reconfigured to
realize the new communication graph in 3D. Consequently, the team’s tracking performance has improved compared to its
tracking performance that existed immediately after the robot’s sensor fault. The base station continues to monitor the team.

to [10], we propose a two-stage strategy to alleviate the
impact of a robot’s sensor quality deterioration on target
tracking performance. When a robot’s sensing deteriorates
(as measured by its measurement noise covariance matrix), the
first stage of our method updates the team’s communication
network topology and a set of measurement fusion weights
for each robot such that the new topology is adjacent to
the original with improved target tracking performance. We
consider two network topologies to be adjacent to each other
if they have identical nodes and the norm of the difference in
their adjacency matrices is below a predefined value. Based
on the sensing quality, our method identifies the neighbors
of each robot and a set of associated weights such that each
robot can optimally fuse its sensor measurements with the
measurements obtained by its neighbors thereby improving
the tracking performance of the team. The method depends
on establishing a relationship between the sensing quality
of each robot and the overall tracking performance of the
team. Common metrics employed to quantify performance
of Kalman filter-based tracking systems are measures on the
state error covariance matrix such as its trace , determinant,
condition number etc. [11]. In our previous work [12], we
have considered a special case of the tracking problem - one
where a (single) target is driven by exogenous inputs that are
known to the tracker robots. In this simplified setting, the
state error covariance matrix can be expressed explicitly as a
function of the robot’s sensor noise covariance matrix. Thus
the optimal sensor fusion weights can be computed by directly
optimizing the trace of the target state error covariance matrix.
This is no longer true when the exogenous inputs are unknown
to the tracking team - the case considered in this paper. In
Section III-B, we show that the sensing quality of the robot
is only implicitly related to the tracking performance of the
team through a set of equations. In spite of this, we show that

a viable heuristic approach - where the sensor fusion weights
are computed based on the quality of the robots’ sensors
- works well both in simulation and experiment providing
evidence that the weights computed in this manner improve
the tracking performance of the robot team. The second stage
of our approach generates a set of coordinates that maximizes
the coverage of the robots over the targets’ domain in the
face of sensor quality deterioration, and realizes the new
communication network topology in three-dimensional space.
We link the coverage metric to the tracking performance metric
by relating robot sensor parameters modeling spatial resolution
to the measurement noise covariance matrix. The framework
considered here accounts for sensor quality deterioration; (near)
complete sensor failure can be incorporated into our framework
by modeling it as a sensor with very high measurement noise
covariance. In addition, we assume that sensor faults do not
result in any bias in the sensor. In other words, the sensor
measurement noise is always characterized by a zero-mean
probability distribution. Further, we assume that robots can
detect sensor faults and estimate their quality deterioration (e.g.,
by fault detection [13] and degradation estimation [14], [15]
techniques in the literature).

Stage one of our method uses mixed integer semi-definite
programs (MISDPs) to formulate and solve the problem of
constructing a communication graph topology and associ-
ated information fusion weights that improve the tracking
performance of the team. We consider two MISDPs: agent-
centric configuration generation (ACCG) and team-centric
configuration generation (TCCG). The first (agent-centric)
maximizes the trace of the inverse of “Intermediate posteriori”
target state estimation error covariance matrix (TISEECM)
associated with the robot which experienced the sensor quality
degradation and the second (team-centric) minimizes the
average of the trace of TISEECM over all the robots. Our
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procedure in stage two solves an optimization problem to
compute the coordinates of the robots that maximizes the
coverage of the robots given measurement noise over the
target’s configuration space under communication constraints
dictated by the graph topology computed in stage one.

Although resilience in multi-robot systems is a well studied
research topic [16], the idea of resilience through reconfigura-
tion during task execution is recent. Resilience in multi-robot
networked systems has been extensively studied in the context
of developing network connectivity conditions required to filter
out the adverse influence of non-cooperating robots in the
team [17]–[19]. Researchers have also developed algorithms
that can perform distributed state estimation using sensor
networks, when a fraction of the sensors in the the network
are manipulated by an attacker according to a known attacker
model [20]–[22]. [23] introduces a planning approach based
on set function optimization to handle failures in a multi-robot
team performing target tracking. All these works focus on
developing offline resilient strategies for the multi-robot team
under the assumption that a certain fraction of the robots in the
team goes rogue or is under the influence of an attacker with
a known model. In contrast, we do not assume any knowledge
of the number of failures and propose an online solution to
encode resilience in a multi-robot team performing multi-target
tracking where the robots experience sensor degradation due
to unknown external factors.

The recent survey paper by Prorok et al. [24] presents a
taxonomy of the various approaches developed for building
resilient multi-robot systems. According to the survey paper, the
strategies presented in [17]–[19] are classified as Pre-operative
approaches. Pre-operative approaches are defined as those
strategies where the decision about the team’s actions are made
apriori [24]. On the other hand, since the strategies presented
in this article identify the sensor quality deterioration and adapt
without information on the origin or type of disturbance, they
are categorized as Intra-operative approaches.

In recent years, researchers have employed the framework
of random finite sets [25] for solving multi-target tracking
problems [26], [27]. Under the random finite set framework,
the evolution of target state densities are tracked instead of
individual target states. In [28], we extended our framework
developed in [10] to encode resilience in a team of robots
performing multi-target tracking using the random finite set
framework. In addition, our work in [29] described a resilience
framework for a team of networked heterogeneous robots
under complete sensor failures. In [29], the robots are tasked
with monitoring an external process of interest using their
sensors and sensors on their one-hop neighbors. To tackle this
problem, we introduced a new notion of observability - one-hop
observability - which quantified a robot’s ability to estimate the
state of an external process using its sensor measurements and
the sensing information obtained from its one-hop neighbors.

This paper is an extension of the conference paper [12].
Compared to our previous work, we consider a more general
model in this work where the robot trackers are unaware of
the external inputs driving the targets. Compared to [12], we
consider a more realistic tracking and coverage model where
a robot’s sensor quality affects both its tracking and coverage.

By bringing in the concept of resilience by reconfiguration
into multi-robot target tracking, we make the following
contributions:
• We pose the resilient multi-robot multi-target track-

ing problem as a mixed integer semi-definite program
(MISDP) in two different ways: agent-centric configura-
tion generation (ACCG) and team-centric configuration
generation (TCCG).

• We compare the solutions obtained from ACCG and
TCCG against each other and with a greedy approach. The
results show that with respect to the target tracking error
TCCG outperforms both ACCG and greedy approach.

• We extend to the formation synthesis problem presented in
[10] to produce robot positions that maximize the team’s
visual coverage given visual sensor deterioration over the
target’s configuration space while satisfying the constraints
imposed by the communication graph topology.

• The approaches are validated using extensive simulations
and their applicability to real world scenarios is demon-
strated through a multi-robot experiment.

The rest of the paper is structured as follows. Section II
outlines the notation used and gives the necessary background
to understand the paper. Section III formally introduces the
problem addressed in this paper. Section IV delineates the
configuration generation and formation synthesis strategies
developed here. Section V discusses the experimental results.
Finally, Section VII summarizes and concludes the paper.

II. NOTATIONS AND PRELIMINARIES

Boldface lowercase and uppercase symbols represent vectors
and matrices respectively. Small letter symbols indicate scalar
quantities. Calligraphic symbols denote sets. Unless otherwise
specified, the variables with a bar are associated with the robot
trackers. Likewise, variables with a tilde correspond to the
targets. R and Z+ denote the set of real numbers and positive
integers respectively. For any positive integer z ∈ Z+, [z]
denotes the set {1, 2, · · · , z}. The standard Euclidean 2-norm
is denoted by ‖·‖. For a matrix M ∈ Rm1×m2 ,m1,m2 ∈ Z+,
‖M‖F denotes the Frobenius norm of the matrix. Additionally,
Tr(M) denotes the trace of M. The symbols 1 and 0 denote
the vector or matrix of ones and zeros, respectively. The
superscripts indicating the dimensions of matrices and vectors
are omitted when they are clear from the context. We use
ei ∈ Rm1 to denote the standard unit normal ith basis vector
of the Euclidean space. For a vector v, Diag(v) gives a matrix
with the elements of v along its diagonal. Conversely, diag(M)
outputs the vector containing the diagonal elements of M. Also,
M> or (M)>, M−1 and M† represent its transpose, inverse,
and Moore-Penrose pseudo-inverse, respectively. Note that we
use (M)i,j to denote the (i, j) element of M. We use Im1

to denote the m1 ×m1 identity matrix. [M1; M2; · · · ; Mm]
represents the vertically concatenated matrix build from the
matrices {M1,M2, · · · ,Mm}. M1 ⊗M2 results in a matrix
obtained by taking the Kronecker product [30] between them.
Similarly, M1⊕M2 yields the block diagonal matrix with M1

and M2 along its diagonal. Sm1
+ and Sm1

++ denotes the space
of m1 × m1 symmetric positive semi-definite matrices and
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TABLE I: Notations

Symbol Description

N Number of robots
D Tracking domain
ī Label of robot i ∈ {1, ..., N}
x̄i x-coordinate of ī w.r.t to global frame
ȳi y-coordinate of ī w.r.t to global frame
z̄i z-coordinate of ī w.r.t to global frame
θ̄i Orientation of ī w.r.t to global frame
x̄iτ Pose [xi yi θi]T of ī at time τ
L Number of targets
{x̄[N ]} Tracker position set
j̃ Label of target j ∈ {1, ..., L}
{x̃[L]} Target position set
G(k) Undirected robot communication graph at time step k
V Vertex set of G[k], {1, ..., N} (robot indices)
E[k] Edge set of G[k] (pairs of robots that can communicate)
A[k] Weighted adjacency matrix associated with G(k)
N(i)[k] Neighbors of ī (can communicate with ī) at time step k
x̃k Targets’ states vector
F̃k Targets’ state transition matrix
G̃k Targets’ input matrix
ũk Targets’ exogenous input
z̄ik Measurement vector obtained by ī
H̄i
k Measurement matrix of ī at k

q̄ik Sensing information vector
Ω̄
i
k Sensor information matrix

x̂i
k|k Posteriori targets’ state estimate

P̄ik Targets’ state estimation posteriori error covariance matrix
P̆i
k|k TISEECM

¯̄qik Information vector
¯̄Ω
i

k Information matrix
δc Communication radius
δs Safe inter-robot distance
δīf Field of view radius
H Coverage functional

positive definite matrices, respectively. A weighted undirected
graph with non-negative edge weights G is defined using
the triplet

(
V, E ⊆ V × V,A ∈ R|V|×|V|≥0

)
, where A is the

weighted adjacency matrix of the graph. Also, E = (V×V)\E
denotes the edge complement of G. Moreover, we use G[k] to
“time stamp” a dynamic graph and denote the adjacency matrix
of an unweighted graph using Au. The matrix Au is defined
as:

(Au)i,j =

{
1 if (i, j) ∈ E
0 otherwise.

(1)

We define the neighbor set of vertex i according to G[k] as
N(i)[k] , {j | (i, j) ∈ E [k]}. A matrix M is doubly stochastic
if its rows and columns sum to unity [30]. Mathematically,
M1 = 1 and 1TM = 1T. Due to Lemma 2.9 of [31], any
doubly stochastic matrix has unity as one of its eigenvalues
and all its other eigenvalues have a magnitude less than unity.
Table I gives the list of the frequently used notation in the
paper.

III. PROBLEM STATEMENT

We consider a team of N ∈ Z+ robots whose labels belong
to [N ]. The team is tasked with tracking a set of L ∈ Z+

moving targets labeled {1, 2, · · · , L} for a time period of T

epochs. We refer to the robot team that tracks the moving
targets as the tracker team and the robots as trackers. The
robot with label i ∈ [N ] is indicated as ī. Similarly, the target
with the label j ∈ [L] is indicated as j̃. Let x̄i denote the triplet
position vector [x̄i, ȳi, z̄i]> ∈ R3 of ī, and {x̄[N ]} denote the
set {x̄i : i ∈ [N ]} of all tracker positions. In similar manner,
x̃j = [x̃j , ỹj , z̃j ]> ∈ D ⊂ R3 denotes position of target j̃ and
{x̃[L]} represent the set of all target positions. D represents a
closed and bounded region where the targets are constrained
to navigate. We assume that the trackers are equipped with
localization capabilities which enable them to determine their
own location with reasonable accuracy.

Since we consider the scenario where the tracker team
performs distributed target tracking, trackers need to com-
municate among themselves. Let the dynamic undirected graph
G[k] = (V, E [k],Au[k]) model the communication network of
the tracker team at the kth time step (k ∈ [T ]). Note that we use
time step, time, and epoch interchangeably in this paper. The
node set V is isomorphic to the tracker team label set [N ]. An
edge (i, j) is included in the edge set E [k] if ī communicates
with j̄ at time k. Let δc ∈ R>0 denote the size of each tracker’s
communication radius. In addition, we assume that the radius
of the field of view associated with the ith tracker is a non-
decreasing function of its position’s z-coordinate, denoted as
δīf (zi) or as δīf . We assume that the trackers are equipped with
sufficient computational capabilities enabling them to perform
their part in the distributed target tracking task.

A. Target dynamics and measurement model

Let the dynamics of target ĩ at time step k be described by
the following standard linear state space equation

xĩk+1 = Fĩkx
ĩ
k + Gĩ

ku
ĩ
k + wĩ

k, (2)

where xĩk ∈ Rsĩa and uĩk ∈ Ruĩ
a are the state and the input

vectors of the target respectively. Here, Fĩk ∈ Rsĩa×sĩa and
Gĩ
k ∈ Rsĩa×uĩ

a are the state transition matrix and input matrix
of appropriate dimensions respectively. wĩ

k ∈ Rsĩa is the zero-
mean normally distributed random vector with the covariance

matrix Qĩ
k ∈ S

sĩa
++. If we stack the state and input vectors

of individual targets to form the stacked state vector x̃ ∈
R|x̃|, |x̃|=

∑L
ĩ=1 s

ĩ
a and input vector ũ ∈ R|ũ|, |ũ|=

∑L
ĩ=1 u

ĩ
a

respectively, then the dynamics of targets can be simplified as:

x̃k+1 = F̃kx̃k + G̃kũk + w̃k, (3)

where
F̃k = F1̃

k ⊕ F2̃
k ⊕ · · · ⊕ FL̃k

and
G̃k = G1̃

k ⊕G2̃
k ⊕ · · · ⊕GL̃

k .

Also, w̃k =
[
(w1̃

k); (w2̃
k); · · · , (wL̃

k )
]

with the covariance

matrix Q̃k = Q1̃
k ⊕Q2̃

k ⊕ · · · ⊕QL̃
k . Each tracker can obtain

measurements about the state of the targets present within
its field of view. The measurement model associated with
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tracker ī obtaining measurements on the state target j̃ when j̃
is contained in the tracker’s sensing region is expressed as

z
(̄i,j̃)
k = H

(̄i,j̃)
k xj̃k + v

(̄i,j̃)
k , (4)

where z
(̄i,j̃)
k ∈ Rmī,j̃ and H

(̄i,j̃)
k ∈ Rs

j̃
a×mī,j̃ are the measure-

ment vector and output matrix of tracker ī while obtaining
measurements about the state of target j̃, respectively. Also,
v

(̄i,j̃)
k ∈ Rmī,j̃ is a zero-mean Gaussian sensing noise vector

with a covariance matrix R
(̄i,j̃)
k ∈ Smī,j̃

++ modeling the sensor
noise characteristics of ī while tracking the target j̃.

Let T ī[k] = {l1, l2, · · · , l|T |} ⊆ [L] denote the set con-
taining the indices of the targets in present in the field
of view of tracker ī at the sampling time k. If we define
z̄īk =

[
z

(̄i,l1)
k ; z

(̄i,l2)
k ; · · · ; z(̄i,l|T |)

k

]
,

Hī
k =

[
el1 ⊗H

(̄i,l1)
k ; el2 ⊗H

(̄i,l2)
k ; · · · ; el|T | ⊗H

(̄i,l|T |)

k

]
,

then the measurement equation of tracker ī can be expressed
as

z̄ik = H̄i
kx̃k + v̄ik, (5)

where v̄ik = [v
(̄i,l1)
k ; v

(̄i,l2)
k ; · · · ; v(̄i,l|T |)

k ] is the augmented
zero-mean Gaussian random vector and
R̄i
k = R

(̄i,1̃)
k ⊕R

(̄i,2̃)
k ⊕· · ·⊕R

(̄i,L̃)
k is its associated covariance

matrix.
Throughout the paper we make the following assumption,

which is a necessary condition for the existence of a distributed
state estimator [32].

Assumption 1. (H̄k, F̃k) is observable for all k ∈ 0 ∪ [T ],
where H̄k = [H̄1

k; H̄2
k; · · · ; H̄N

k ]. In other words, the system is
collectively observable.

B. Decentralized and distributed Kalman filter for tracking
unknown inputs DDKFU

In this subsection, we describe the decentralized distributed
Kalman filter computation employed by the trackers to col-
lectively track the targets maneuvering in an environment
according to the dynamics described in Section III-A. The
main advantage of employing a decentralized distributed
Kalman filter compared to a centralized one is the fact that
a decentralized Kalman filter eliminates the need for central
data fusion center (an entity that communicates with all the
robots and collects their sensing information) to perform the
data fusion [32]. The decentralized distributed Kalman filter is
a well studied topic and various versions of the filter can be
found in both in controls and robotics literature [3], [6], [33].
There is also a sizeable amount of literature on distributed
Kalman filters that depend on centralized data fusion, which
we do not consider in this paper. Interested readers can refer
to [34]–[36] and the references therein. In this section of the
paper, we primarily follow the formulation presented in [37],
[38]. These works consider the problem of constructing Kalman
filters when the exogenous inputs to the process are unknown.

Additionally, we make the following assumption, which
is a necessary condition required for the existence of an
unbiased state estimator when the exogenous inputs to the
target dynamics are unknown [37], [38].

Assumption 2. The rank of H̄kG̃k equals the rank of G̃k,

We are now in a position to describe the distributed Kalman
filtering algorithm used in this paper. The algorithm consists
primarily of two steps: 1) consensus update and 2) individual
update. These steps can be visualized as processes happening
in a set of nested loops. The inner loop handles the operations
associated with the consensus step, and the outer loop executes
the operations related to the individual update step. When
robot ī receives measurement z̄ik according to Equation 5, it
computes two quantifies

q̄ik{0} = (H̄i
k)>(R̄i

k)−1z̄ik

Ω̄
i
k{0} = (H̄i

k)>(R̄i
k)−1H̄i

k.

We refer to these quantities as sensing information vector
(SIV) and sensor information matrix (SIM) respectively. The
nomenclature for these terms stems from the fact that they
encode the information about a robot’s sensors and sensor
measurements obtained through its sensors. Once these quan-
tities are computed, the robots in the tracker team exchange
information among their neighbors and exponentially reach a
consensus on the average of the quantities over the trackers.
The robots exchange information according to the following
equations:

q̄ik{l + 1} =
∑

j∈N(i)[k]∪{i}

(
Ā[k]

)
i,j

q̄jk{l} (6)

Ω̄
i
k{l + 1} =

∑
j∈N(i)[k]∪{i}

(
Ā[k]

)
i,j

Ω̄
j
k{l}, (7)

where [Ā[k]]i,j is the (i, j) entry of a doubly stochastic matrix
Ā[k] which has the same structure as the unweighted adjacency
matrix (Au[k]) of G[k] except for the diagonal elements.
Specifically, Ā[k] is non-zero along its diagonal and its off-
diagonal elements are non-zero if and only if the corresponding
elements of Au[k] are unity. In theory, the SIV and SIM of the
robots converge to the respective averages only when l tends
to infinity. However, it has been shown that this consensus
protocol enjoys the additional property of an exponential rate of
convergence [31]. As a result, a reasonable level of consensus
on the SIV and SIM can be achieved by propagating Equation 6
and Equation 7 for a sufficient number of consensus steps η.
Therefore, it is necessary that the consensus update can be
executed at a much faster time scale than the system dynamics
(Equation 2).

After η steps the consensus update, each tracker executes
its individual update using the following the equations.

State Prediction:

x̂ik|k−1 = F̃k−1x̂
i
k−1 (8)

P̌i
k|k−1 = N(F̃k−1P̄

i
k−1(F̃k−1)> + Qk−1). (9)

Intermediate posteriori state error covariance:

P̆i
k|k , ((P̌i

k|k−1)−1 + Ω̄
i
k)−1 (10)
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Input estimate:

θk = (I− Ω̄
i
kP̆

i
k|k)q̄ik (11)

Θk = Ω̄
i
k − Ω̄

i
kP̆

i
k|kΩ̄

i
k (12)

ûik−1 = (G̃>k−1ΘkG̃k−1)−1

(G̃>k−1θk − G̃>k−1Ω̄
i
kx̂

i
k|k−1) (13)

Local innovation or measurement update:

x̂i∗k|k = x̂ik|k−1 + G̃k−1û
i
k−1 (14)

x̂ik|k = x̂i∗k|k + P̌i
k|k−1(θk −Θkx̂

i∗
k|k) (15)

Υk = G̃k−1(G̃>k−1Ω̄
i
kG̃k−1)−1G̃>k−1 (16)

P̌i∗
k|k = P̌i

k|k−1 −ΥkΩ̄
i
kP̌

i
k|k−1 − P̌i

k|k−1Ω̄
i
kΥk (17)

P̄i
k =

1

N
(I− P̌i

k|k−1Ω̄
i
k)(P̌i∗

k|k − P̌i
k|k−1Ω̄

i
kΥk), (18)

where q̄ik , q̄ik{η} and Ω̄
i
k , Ω̄

i
k{η}.

From the above equation it is clear that sensor measurement
noise covariance matrices of the robots are implicitly related
to the state estimate error covariance matrix. This relationship
motivated us to investigate the idea of improving the track-
ing performance by optimally fusing the sensor information
matrices.

For ease of readability, we move the details associated with
decentralized and distributed Kalman filter for tracking known
inputs (DDKFK) to Appendix C.

C. Tracking under sensor quality deterioration

In this subsection, we formally introduce the problem
which is analyzed and solved in this paper. As mentioned
in Section I, we consider the problem of mitigating the impact
of sensor quality degradation on target tracking performance
through appropriate reconfiguration of the tracker team. We
will give a precise definition of what we mean by tracker
team reconfiguration and sensor quality deterioration after we
introduce some additional terminology and notation.

We term the tuple (G[k], Ā[k]) as the configuration of the
tracker team at the kth time step and symbolize it by C[k]. The
matrix Ā[k] is a doubly stochastic matrix whose elements are
used to perform the information fusion computations outlined
in Equation 6 and Equation 7 for the consensus step. During
tracking operation for a T time steps, suppose nf detrimental
events occur independently to random trackers in the tracker
team. Each event inflicts undesirable effects on the tracker’s sen-
sor, which results in sensor quality degradation. At a particular
time k, we say that tracker i’s sensor quality is deteriorated if
the average trace of the measurement covariance matrices over
the tracked targets at that instant has increased with respect
to the previous instant. In other words, if Tr(R̄i

k)/|T ī[k]| >
Tr(R̄i

k−1))/|T ī[k − 1]|, then ī’s sensor quality deteriorated
at time k. Recall that we assume the sensor is unbiased even
after its quality deteriorates.

We consider a sequence F = [k1, k2, · · · , kp, · · · , knf
],

where kp ∈ [T ] indicates the time step when the pth sensor
fault occurred. Consequently, we specify that C[kp − 1] is
the configuration of the tracker team before pth detrimental

event or sensor fault occurred. Now, we formally define the
problems studied in this paper. The first problem (Problem 1)
deals with reconfiguration of the tracker team such that target
tracking performance is optimal in some reasonable sense.
Complementing the first problem, the second problem addresses
the issue of realizing the graph topology in 3-dimensional space
while maximizing the tracker team’s coverage over D.

Problem 1. Configuration generation or reconfiguration:
Given that:
• tracker i experienced deterioration at some time kp,
• H̄i

k+
p

is the sensor noise covariance matrix immediately
after the sensor fault event, and

• C[kp − 1] is the tracker configuration prior to the event,
determine a new configuration C[kp] such that

1) G[kp] is a connected graph,
2) ‖Au[kp] − Au[kp − 1]‖F≤ 2e, where e ∈ Z+ is the

allowable number of edges to be modified in G[kp − 1]
to obtain G[kp], and

3) tracking performance is optimized.

Graph connectivity is an essential requirement for any
distributed computation over a network and thus is enforced
in Problem 1 [31]. The second condition enables the user to
control the communication load on the generated configuration
by tuning the parameter e. Finally, the third condition ensures
good tracking performance. As noted in Section I, we take a
heuristic approach to ensure good tracking performance for
the team. In the forthcoming section, we describe the approach
for solving these problems.

Problem 2. Formation synthesis: Given a tracker team
configuration C[kp] and the tracker team’s sensor model
parameters, generate coordinates that best realizes the given
configuration and maximizes tracker team’s coverage over D,
subject to various constraints. These constraints ensures that
the robot are at safe distance from each other and they are
confined to D. We defer the exact details of this problem to
Section IV-B.

IV. METHODOLOGY

In this section, we detail our strategies for solving Problem 1
and Problem 2. As indicated earlier in Section I, a base
station monitors the activities of the tracker team. When a
sensor fault occurs, the base station computes a new formation
using the available information and directs the tracker team to
reconfigure. Akin to our framework in [10], the base station
in this paper also uses a two-step procedure to compute a
new configuration and generate a set of robot coordinates that
realize the computed configuration in three-dimensional space.
As in our earlier work, we refer to these steps as configuration
generation and formation synthesis. An illustration of the
overall base station decision making process is outlined in
Figure 2. We emphasize that configuration generation and
formation synthesis steps are solutions to Problem 1 and
Problem 2 respectively. The subsequent subsections delineate
the steps in detail. Additionally, for ease of reference, we have
included the agent-centric configuration generation and team-
centric configuration generation formulations when the external
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infeasible

initial configuration degraded sensor desired topology fully reconfigured

Configuration Generation Formation Synthesis

sensor quality info network topology new coordinates

Our Method

Fig. 2: Outline of our strategy. When a robot’s sensor quality is affected, configuration generation modifies the communication
graph. Then, formation synthesis generates the physical locations for the robots that support the desired graph topology.

inputs to targets are known to the trackers presented in [12].
We use the abbreviations ACCGK and TCCGK to denote
our agent-centric configuration generation and team-centric
configuration generation formulations when inputs are known,
respectively.

A. Configuration generation
Our two strategies to solve Problem 1 are detailed in this

subsection. As mentioned earlier, we refer to these strategies
as agent-centric configuration generation (ACCG) and team-
centric configuration generation (TCCG). Both strategies are
based on solving a mixed integer semi-definite program. In
the literature, many network topology design problems are
addressed by posing them as MISDPs [39], [40]. Although it
is well known that integer programming problems are NP-hard
[41], reasonably sized problems can be solved using branch
and bound [41] type algorithms by exploiting good heuristics.
In the agent-centric configuration method, the idea is primarily
to find a new configuration such that trace of information
matrix (inverse of TSEECM) associated with the tracker in the
tracker team that experienced a sensor quality deterioration is
maximized. On the contrary, the team-centric method aims to
minimize the average of the trace of TSEECMs associated with
all the trackers. Since the optimization over the covariance
matrices obtained after η > 1 steps consensus results in a
mixed integer non-linear programming problem, we use the
TSEECM obtained after one step consensus to formulate and
solve the resulting MISDPs for both strategies. Before we dive
into the details of the MISDP formulations, we state a theorem
that serves as the basis for the connectivity inequality constraint
in MISDPs [28].

Theorem 1. If a graph containing self loops at every node is
equipped with a weighted adjacency matrix A that is doubly
stochastic, then any graph isomorphic to this graph with or
without self loops is connected if and only if

1

n
11T + I � A (19)

Proof. See Appendix A for the proof.

1) ACCG: The following MISDP encodes our agent-centric
configuration generation approach:

maximize
A∈SN

+ , µ∈R>0,

Π∈{0,1}n×n

(eNi )TA


Tr(Ω̄1

kp
[0])

Tr(Ω̄2
kp

[0])
...

Tr(Ω̄n
kp

[0])

+ Tr((P̌i
k|k−1)−1)

(20)
subject to A · 1n = 1n (21)

1

n
11T + (1− µ)I � A, µ� 1 (22)

diag(Π) = 1n (23)

Π = ΠT (24)

A = AT (25)
[A]i,i > 0 ∀ i ∈ [n] (26)

[A]i,j ≥ 0∀ (i, j) ∈ [n]2, i 6= j (27)

[A]i,j ≤ Πi,j∀ (i, j) ∈ [n]2, i 6= j (28)

‖Π− Ā[kp − 1]‖2F≤ 2e. (29)

The decision variables A and Π model the doubly stochastic
matrix used for consensus protocol and the adjacency matrix
of the generate configuration respectively. Constraint 21 and
Constraint 25 to Constraint 28 ensure that A is a doubly
stochastic matrix that is structurally equivalent to Π. In light of
Theorem 1, Constraint 22 enforces the generated configuration
to possess a connected graph. Finally, Constraint 29 encodes the
second condition in Problem 1 into the MISDP. If i represents
the label of the robot that suffered sensor quality deterioration
at kp, then with some simple algebraic manipulation it is
easy to see that Equation 20 is equal to Tr(Ωi

kp
(1)) or

Tr((P̄i
kp

(1))−1).
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2) ACCGK: The following MISDP describes the agent-
centric approach developed in [12].

maximize
A∈SN

+ , µ∈R>0,

Π∈{0,1}n×n

(eNi )TA


Tr( ¯̄Ω

1

kp [0])

Tr( ¯̄Ω
2

kp [0])
...

Tr( ¯̄Ω
n

kp [0])

 (30)

subject to
Constraint 21− Constraint 29.

3) TCCG: Consider the following MISDP formulation
encoding the team-centric configuration generation
strategy that minimizes 1

n

∑n
i Trace(Pi

kp
(1)), where

Pi
kp

(1)) = (Ωi
kp

(1))−1.

minimize
A∈Sn

+, µ∈R>0,

Π∈{0,1}n×nP̄,∆̄∈Sn×sa
+ ,

∆1,∆2,···,∆n∈Ssa
+

1

n
Tr(P̄) (31)

subject to
[
P̄ I
I ∆̄

]
� 0 (32)

(A⊗ I)


Ω̄1
kp

[0]

Ω̄1
kp

[0]
...

Ω̄1
kp

[0]

+


(P̌1

k|k−1)−1

(P̌2
k|k−1)−1

...
(P̌N

k|k−1)−1

 =


∆1

∆2

...
∆N

 (33)

Constraint 21− Constraint 29,

Where ∆̄ , ∆1 ⊕ ∆2 · · · ⊕ ∆n and, AandI are matrices
of the equal size. Constraint 33 is essentially Equation 7 for
L = 1 written compactly as a single equation for the whole
tracker team. Therefore, ∆i should match the information
matrix Ωi

kp
(1). The following lemma proves that minimizing

Equation 31 minimizes 1
n

∑n
i Trace(Pi

kp
(1))).

Lemma 1. The objective 1
nTr(P̄) is an upper bound on

1
n

∑n
i Trace(Pi

kp
(1)))

Proof. See Appendix B for the proof.

4) TCCGK: We describe the team-centric configuration
generation approach developed in [12] using the following
MISDP.

minimize
A∈Sn

+, µ∈R>0,

Π∈{0,1}n×nP̄,∆̄∈Sn×sa
+ ,

∆1,∆2,···,∆n∈Ssa
+

1

n
Tr(P̄) (34)

subject to
[
P̄ I
I ∆̄

]
� 0 (35)

A⊗ I


¯̄Ω

1

kp [0]
¯̄Ω

1

kp [0]
...

¯̄Ω
1

kp [0]

 =


∆1

∆2

...
∆N

 (36)

Constraint 21− Constraint 29.

B. Formation synthesis

We now describe a procedure to assign a physical location
to each robot such that the team’s coverage performance
is maximized over D. We also impose constraints so that
connected robot pairs remain within communication distance
δc of each other, and the distance between all robot pairs
exceed δs to ensure that no two robots collide.

We calculate coverage performance H following [42] as

H = Hc −Ho (37)

where Hc =
∑
i∈E

∫
Vi
Survi(q)φ(q)dq (38)

Ho =
∑
i∈E

∫
Ṽi
Survi(q)φ(q)dq, (39)

where Vi indicates the region of dominance of robot i, and Ṽi
indicates the region covered by robot i where another robot in
the team has superior sensing performance. Note that we set
the region of dominance of a robot according to its field of
view instead of the conic Voronoi diagram as in [42] for ease
of computation. Additionally, we set the density function φ(q)
as a constant to encode uniform importance of each point in
the space.
Survi(q) quantifies the surveillance quality of robot i for

point q and is a function of its perspective quality Persi and
loss of resolution Resi at that point:

Survi(q) = Persi(q)Resi(q) (40)

Persi(q) =
ω

ω − λi

(
z̄i

‖q −Xi‖
− λi
ω

)
(41)

Resi(q) =

(
λi
ω

)κ
exp

(
− (‖q −Xi‖−R)2

2σ2

)
, (42)

where ω ,
√
λ2
i + (δīf )2. Here Xi refers to the projected

ground position of robot i as [xi yi]T , and λi refers to the
focal length of the robot’s camera sensor. The parameters κ
and σ model spatial resolution variability of the robot’s camera
sensor. R indicates the desired range of the sensor.

We set the parameter σ as |Det(R̄i
k − R̄i

0)| to model an
inverse relationship between sensor noise and spatial resolution.
Thus, sensor deterioration through increasing R̄i

k does not only
affect tracking performance step, but also indirectly affects the
coverage performance.

This leads to the following constrained optimization problem
for coverage performance:

maximize
{x̄[N]}

H (43)

− ‖Avg(X[N ])−Avg(X[L])‖ (44)
− ‖Avg(X[N ])−Avg(X ′[N ])‖ (45)

subject to δs ≤ ‖Xi −Xj‖ ≤ δc ∀ (i, j) ∈ E (46)

δs ≤ ‖Xi −Xj‖ ∀ (i, j) ∈ E (47)

Bmin ≤ Xi ≤ Bmax ∀ i ∈ V, (48)

where Xi indicates the position of robot i as [xi yi zi]T . The
terms Bmin, Bmax ∈ R3 are the minimum and maximum
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extents of an axis-aligned bounding box, with the operator
≤ applied elementwise in Equation 48. We add the term in
Equation 44 to the objective function to minimize the difference
between the centroid of the trackers (Avg(X[N ])) and the
centroid of the targets (Avg(X[L]). We use the first tracker’s
target estimates for calculating the target centroid, but the
convergence of the distributed DKF allows for any tracker’s
estimates to be used. Similarly, we add Equation 45 as a term
in the objective function to minimize the difference between
the new tracker positions and the previous tracker positions,
which are denoted by X ′[N ].

1) Simulated annealing: Simulated annealing (SA) is a well-
known probabilistic technique for approximating the global
optimum of an optimization problem with a large search space,
such as our proposed coverage performance problem 43. Our
description of SA assumes a minimization problem to follow
the classic energy-based exposition. In searching for a global
minimum, SA can escape poor local minima by occasionally
randomly taking a step that increases the value of the objective
function.

Algorithm 1: Simulated annealing ( [43], [44])
Input: x0 : initial guess
Output: Local optimal solution

1 Function Simulated annealing(x0)
2 x← x0 // set initial guess as the

solution
3 repeat
4 x′ ← Propose(x) ;
5 if E(x′) < E(x) then
6 x← x′;
7 else
8 x← x′ w/ probability

exp(−T (E(x′)− E(x)))

9 T ← Cooling(T )
10 until stopping criterion met;
11 return x;

12 Function Propose(x)
13 sample j ∼ Uniform([n]), d ∼ Uniform([3]) ;
14 sample δ ∼ Uniform([−δmax, δmax]);
15 x′ = x;
16 x′j,d ← x′j,d + δ;
17 return x′;

We recap the algorithmic framework of SA in Algorithm 1.
Propose(x) generates a new value x′, an adjacent solution
to x. E(x) is the objective or energy function. T is the
temperature, or the probability of taking a step that increases the
minimization objective. Cooling(T ) models a cooling schedule
which decreases T over time. For additional details on SA
refer to [43], [44].

In the implementation of Propose(x), we first randomly
select a tracker whose position we will modify to create a new
formation. We then randomly select a direction in which to
translate the tracker’s position. The distance for the translation
is uniformly sampled between (−δs, δs). We use exponential

cooling (Cooling(T ) = γT for 0� γ < 1), and a fixed number
of steps as our stopping criterion. These were straightforward
choices that yielded good solutions in our simulations and
experiments.

We capture the objective and constraints in 43 in the energy
function E(x) through penalty functions:

E(x) = −Hc + pH(Ho) (49)

+
∑

(i,j)∈E

pH(δc − ‖Xi −Xj‖2)

+
∑

(i,j)∈E

[pH(δs − ‖Xi −Xj‖2) + pH(‖Xi −Xj‖2−δc)]

+
∑
i∈V

∑
d∈[3]

pH(Xi,d −Bmax
d ) + pH(Bmin

d −Xi,d), (50)

where pH denotes a penalty function satisfying the property

lim
H→∞

pH(y) =

{
∞ : y > 0

0 : y < 0.
(51)

The “hardness” parameter H > 0 increases over iterations,
analogous to the decay of T . As in [10], we use the exponential
penalty pH(y) = eHy.

We emphasize that using penalty functions in E(x) does not
guarantee that the solution will satisfy the hard constraints 46–
48. It is therefore necessary to perform a final feasibility check
on the SA output after termination. If the SA output is not
feasible according to 46–48, we restart the algorithm. In our
experiments, we run SA for 20,000 steps. We choose γ such
that T decays from 1 to 10−8, and the growth constant for H
such that H increases from 1 to 103. We let δmax = δs/10.
Note that tunings of T and H are sensitive to the overall scale
of the distances D, δs, δc involved in the problem (≈ 1 meter
in our experiments).

V. SIMULATION RESULTS

In this section, we describe validation of our methodology
using multiple simulation experiments of a multi-robot team
tracking targets with unknown external inputs. The targets
follow two-dimensional single integrator dynamics, given by
the parameters

Fk =


1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

 , Gk =


0 0
0 0
1 0
0 1

 (52)

and input vector uk = [vxk , v
y
k ]. Targets are initialized in a

grid formation in the simulation space, a bounding box of
x ∈ [−30, 30], y ∈ [−30, 30]. At each time step, we apply
input to each target such that it travels in a straight line to the
edge of the bounding box before reversing direction.

For the distributed Kalman filter, we initiate the same H̄i
k

and Ri
k for each robot in the tracker team. We used L = 15

for the consensus step. Parameters chosen for the configuration
generation and formation synthesis problems were e = 1,
ds = 10, dmc = 10, and disen = 30∀ i ∈ [n], with a bounding
box of x ∈ [−50, 50], y ∈ [−50, 50], and z ∈ [−10, 10].
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To simulate deteriorating sensor quality for a robot i, we
modified its covariance matrix Ri

k by adding a random positive
semi-definite matrix of the same size. These random semi-
positive definite matrices were generated by multiplying a
matrix sampled from a uniform distribution between 0 and 1
by its transpose and then multiplying by some fixed scalar.
The determinant of the modified Ri

k matrix was then added
to the σi value of the robot when calculating its individual
surveillance quality for the formation synthesis step.

We generated 10 different deterioration event sequences for
robot teams of n ∈ {7, 10, 15, 20} where a random robot was
chosen at every f time step of the simulation to experience
sensor deterioration. Each trial was initialized with the trackers
positioned in a line and communicating according to the
corresponding line graph. Figure 3 illustrates a single simulation
trial for a team of 7 tracking 4 targets at different sensor
deterioration events before and after reconfiguration. In the
supplementary material, we also include a video of a team of
7 robots tracking 5 targets, 4 of which have pre-determined
trajectories and 1 which follows user commands.

To quantify performance for both the ACCG and TCCG
strategies, we plotted the average improvement of maximum
Tr(P̄i

k), maximum estimation error, and average H of the
robot team over a baseline scenario where reconfiguration is not
applied after failure. We also evaluate a greedy strategy in which
a single edge is added connecting the robot whose sensing
quality has deteriorated to the robot with lowest Tr(P̄i

k) at the
time of the deterioration event. Figure 4 shows the aggregate
results of these simulations over all trials at different failure
events. The term ’Delta’ used in the charts in this figure refers to
the difference between the evaluated scenario and the baseline
for the given metric. Both ACCG and TCCG approaches
show greater improvement in maximum estimation error and
covariance over the baseline scenario than the greedy approach.
However, the trade-off between minimizing estimation errors
and covariance is a reduction in overall coverage of the tracking
area. All approaches show decreasing H after each failure
event as edges are added and robots are pulled closer together,
increasing overlapping fields of view.

Additionally, Figure 5 compares the failure node estimation
errors and Tr(P̄ ik) of the ACCG and TCCG approaches to
the previously developed ACCGK and TCCGK approaches.
The difference in error and covariance between the scenario in
which inputs are unknown and the scenario in which inputs are
known is small, which indicates that both agent-centric and
team-centric configuration generation strategies are appropriate
for both tracking situations. The primary reason for this stems
from the fact that the target dynamics described in Equation 52
satisfies the condition described in Assumption 2 which ensures
the converges of Kalman filter.

VI. EXPERIMENTS

To validate our framework in a real-time setting, we
implement it on the Crazyswarm multi-quadrotor platform [45]
using two quadrotors as targets and five as trackers. Aside
from demonstrating that our methods are sufficiently fast and
robust to use in real time, our hardware experiments test the

accuracy of our distributed Kalman filter (DKF) on targets
following real-world quadrotor dynamics. A photograph of our
experiment is shown in Figure 7.

Due to complexity and resource constraints, we simulate the
DKF on the base station PC instead of running it onboard
the quadrotors’ embedded processors. We emphasize that,
while the implementation runs on the PC, it obeys the same
communication constraints as it would if running onboard the
tracker quadrotors. That is, while the base station facilitates
communication between all quadrotors, only quadrotor pair
that would directly communicate according to the weighted
adjacency matrix A share information through the base station
during the consensus step. Additionally, when targets move
outside of a tracker’s FOV, information of that target is not
shared with the tracker by the base station.

Our real-time implementation uses three concurrent pro-
cesses (POPT , PHW , PDKF ), devoted to optimization, hard-
ware I/O, and Kalman filtering respectively; and four queues
(QM , QE , QT , QC), devoted to target position measurements,
DKF state estimates, tracker network topology commands, and
tracker position commands respectively. The data flow between
these elements is illustrated in Figure 6.

The optimization process POPT “drives” the experiment.
At the beginning of its main loop, POPT fetches the most
recent DKF state estimate from QE . It then simulates sensor
degradation events and executes our centralized method to
design a new network topology and formation using the same
method described in Section V. We restricted the formation of
the trackers to be within bounding box x ∈ [−5, 5], y ∈ [−5, 5],
and z ∈ [1.05, 2.25]. Targets were restricted to the same x,y
bounds, and restricted in height to z ∈ [0, 1]. POPT then places
the new topology and the new positions of the formation on
QT and QC respectively.

The hardware process PHW continually sends low-level
commands for the targets to move in concentric counter-rotating
circles. Additionally, in each loop, PHW checks QC for new
tracker coordinates. If present, it sends high-level “go to and
stop” commands to each tracker quadrotor. PHW also receives
position measurements from the motion capture system and
places them on QM .

The distributed Kalman filter process PDKF simulates our
distributed Kalman filter algorithm (Section III-B) running
onboard the trackers. In each loop, PDKF checks QT for
a new network topology and updates the DKF simulation
state accordingly. PDKF then reads the most recent motion
capture measurement from QM . Each tracker updates its local
state estimate using the measurements received, and exchanges
information with its neighbors. Then, it uses the information
exchange after consensus to update its estimate of the tracker
state. Finally, it publishes the complete state estimate of each
tracker on QE . As described in Section III-B, state estimates
from all trackers will have converged, and a single estimate
from any tracker can be used for planning.

Since our formation synthesis does not address the need
for collision-free formation change trajectories, we employ
buffered Voronoi collision avoidance [46] running onboard the
quadrotors. The buffered Voronoi method is decentralized, and
hence provides lower-quality solutions than centralized methods
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(a) Before First Event (b) Before Third Event

(c) After First Event (d) After Third Event

Fig. 3: Screenshots of a simulation in which a seven quadrotor team tracks four targets below them. Each quadrotor’s field of vision is
colored in light blue. The quadrotor’s themselves are depicted with an ’x’. The target trajectories are depicted with a ’+’. The figures in the
top row depict the formation of the quadrotors before the occurrence of a sensor deterioration event. The corresponding figures on the bottom
portray the formation after 1) sensor deterioration is detected, 2) a new communication edge is chosen, and 3) the robots move to their new
locations.

max Tr(P̄i
k) max Estimation Error H

Average Delta St. Dev Delta Average Delta St. Dev Delta Average Delta St. Dev Delta
ACCG 2.012 2.873 0.686 3.146 0.012 0.477
TCCG 2.369 3.738 0.855 4.121 0.103 0.631
greedy 1.884 2.222 0.621 2.810 -0.112 0.477

TABLE II: Summary statistics (mean and standard deviation) for the improvement in maximum Tr(P), maximum estimation error, H over
the baseline by strategy.

such as [47], but quality is reasonable when there are no
environmental obstacles and the initial and final configurations
are close. The distance term (45) in our formation synthesis
objective therefore helps make collision avoidance easier.

We monitored the estimation errors and sensing covariance
of the trackers during the experiment. Three sensing failure
events were simulated. After each failure event, the quadrotor
team is able to recover and maintain good estimation of the
target trajectories. Figure 9 depicts the results of the experiment.
Figure 8 illustrates one of the true target trajectories and its
trajectory as estimated by the tracker team.

Sensing failures result in a spike in covariance and estimation
error. Spikes in estimation error also occur when the targets
move out of the field of view of the one or more of the trackers.
This type of event triggers a formation synthesis step without
an optimization step. The sensing covariance at time points
when targets are not in the field of view is not largely affected
as a sensing failure has not occurred.

The combination of sensing failures and missed observations

due to the target moving outside of the field of view result in
instances of imperfect tracking, as shown in Figure 8. However,
the team is able to trace the target trajectory with minimal
errors over the duration of the experiment.

VII. CONCLUSION

In this work, we proposed a novel strategy that allows a
team of robots tasked with tracking a set of targets whose
exogenous inputs are unknown, to reconfigure themselves
in response to deterioration in the sensing quality in one
member of the team. The reconfigured team mitigates the
impact of the sensor quality deterioration on team’s tracking and
coverage performance. The strategies, which we term as agent-
centric and team-centric, were validated in simulation and were
compared to each other and a greedy strategy. Additionally,
the strategies were compared to the agent-centric and team-
centric strategies developed in our previous work [12], where
any exogenous inputs driving the targets were known to the
tracking robots. In terms of the estimation error in tracking
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(a) Average of max Tr(P̄i
k) -

max Tr(P̄i
k)baseline

(b) Distribution of max Tr(P̄i
k) -

max Tr(P̄i
k)baseline

(c) Average of max estimation error -
baseline max estimation error

(d) Distribution of max estimation error -
baseline max estimation error

(e) Average of H - Hbaseline (f) Distribution of H - Hbaseline

Fig. 4: Comparison of the average improvement of maximum Tr(P) and maximum estimation error over the baseline scenario between
ACCG (blue), TCCG (orange), and the greedy (green) approaches over all simulations and team sizes. For each failure event, both the
ACCG and TCCG strategies outperform the greedy strategy in both estimation error and covariance, though variance of their performance
increases after several failure events, as shown by the length of the boxplots. All approaches show decreasing trend in H as edges are added
after each failure event. Summarized statistics of these results are provided in Table II. The simulations are described in Section V.

the state of the targets, we infer that the team-centric approach
outperforms both the agent-centric and greedy approaches.
When comparing the agent-centric and greedy approaches we
find that both gives similar results. This is due to the fact that
akin to the greedy strategies the agent centric methods takes
myopic decisions enforcing the affected robot to connect to a
robot in the team with better sensing quality. Moreover, the
results of the team- and agent-centric approaches proposed in
this article are comparable to the ones proposed in our previous
work [12]. Furthermore, we demonstrated that our strategy can
be implemented to run in real time and applied to real-world
scenarios through multi-robot experiments using quadrotors.
Future work involves developing a decentralized version of our
strategy which are scalable with the number of robots in the
team.

APPENDIX A
PROOF OF THEOREM 1

Let L = I−A, then since A is doubly stochastic L1n = 0n

and LT1n = 0n. Also, as the spectrum of A is real and less
than or equal to one in magnitude, the spectrum of L is real and
less than or equal to zero. Now, from the above statement we
conclude that L is a positive semi-definite matrix. Furthermore,
note that L can be interpreted as the Laplacian of a weighted
undirected graph GL having the same topology of the graph
associated with A except for self loops. Since the connectivity
properties of an undirected graph does not depend on the
existence of self loops, the original graph (the graph associated
with A) is connected if and only if GL is connected. From
[48, Proposition 1], we infer that GL is connected if and only
if L + 1

n11T � 0. Therefore, substituting L = I −A in the
equation yields 1

n11T + I � A.
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(a) Average Tr(P̄i
k) (b) Average maximum estimation error

Fig. 5: Average Tr(P̄i
k) and maximum estimation error between ACCG, TCCG and ACCGK, TCCGK strategies. The performance of the

approaches where inputs are unknown are comparable to their counterpart approaches in which target inputs are known to the team.

PHW

Hardware I/O
PDKF

Simulate distributed
Kalman filter

POPT

Simulate failures,
Optimization

QM
measurements

QE
DKF state

QC
coordinates

QT
topology

Fig. 6: Data flow between concurrent processes (sharp corners)
and queues (round corners) in our real-time implementation.

Fig. 7: Enhanced photograph of our real-time implementation
controlling five trackers (blue) and two targets (orange). See
Section VI for details.

APPENDIX B
PROOF OF LEMMA 1

According to Schur complement lemma [49, Chapter 2], the
linear matrix inequality (LMI) [49][

Q S
ST R

]
� 0 (53)

is equivalent to the conditions R � 0, Q − SR−1ST � 0.
Therefore, the LMI (32) is equivalent to P̄−∆̄−1 � 0. Also, it
is straightforward to see that Trace(P̄) ≥ Tr(∆̄−1). Since ∆̄ is
the block diagonal matrix containing the posterior information
matrices of all tracking robots, ∆̄−1 is a block diagonal matrix
with {P1

kp
(1),P2

kp
(1), · · · ,Pn

kp
(1)} along its diagonal. This is

Fig. 8: Kalman filter-estimated trajectory and true trajectory
of one of the target quadrotors. The combination of sensing
failures and missed observations due to the target moving
outside of the field of view result in instances of imperfect
tracking, but the team is generally able to follow the target
with minimal error.

mathematically written as

∆̄−1 =


P1
kp

(1) 0 · · · 0

0 P2
kp

(1) · · · 0
...

...
. . .

...
0 0 · · · Pn

kp
(1).

 (54)

Therefore, 1
nTr(P̄) ≥ 1

nTr(∆̄
−1) is equivalent to 1

nTr(P̄)
≥ 1

n

∑n
i Tr(P

i
kp

(1)).

APPENDIX C
DECENTRALIZED AND DISTRIBUTED KALMAN FILTER FOR

TRACKING KNOWN INPUTS (DDKFK)

For the sake of completeness, we describe the decentralized
and distributed Kalman filter delineated in our previous work
[12], which solves multi-target tracking problems when the
external inputs to the targets are known to the trackers. For ease
of readability, we move the details associated with DDKFK
to appendix The formulation presented primarily follow the
outlined in [6], [50] and the references therein. Similar to the
formulation described in Section III-B, the distributed Kalman
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(a) Average Tr(P̄i
k) of tracker team (b) The maximum estimation error of tracker team for each target

Fig. 9: Average Tr(P̄i
k) for the full state, and maximum estimation error for each target made by the five quadrotor tracker team in our

experiment. Sensing failures occurred at times t ∈ {500, 1300, 1550}, resulting in a spike in covariance and estimation error. At times
t ∈ {250, 1000}, the targets move out of the field of view of the one or more of the trackers. These events cause a spike in estimation error,
and also triggers a formation synthesis step without an optimization step. The sensing covariance at these time points is not largely affected
as a sensing failure has not occurred.

filter delineated here also contains the same two steps namely:
1) individual update and 2) consensus update. Contrary to
formulation in the previous subsection, the robots preform the
individual update before the consensus step. Upon receiving
the measurement vector z̄ik, the robot ī makes a local estimate
about the states of the targets using the following standard
Kalman filter equations.

Prediction:

x̂ik|k−1 = F̃k−1x̂
i
k−1 + G̃k−1ũk−1 (55)

P̄i
k|k−1 = F̃k−1P̄

i
k−1(F̃k−1)> + Qk−1. (56)

Local innovation or measurement update:

K̄i
k = P̄i

k|k−1(H̄i
k)T
(
H̄i
kP̄

i
k|k−1(H̄i

k)T + H̄i
k

)−1

(57)

x̂ik,0 = x̂ik|k−1 + K̄i
k(z̄ik − H̄i

kx̂
i
k|k−1) (58)

P̄i
k,0 = P̄i

k|k−1 − K̄i
kH̄

i
kP̄

i
k|k−1. (59)

In the consensus step, the each tracker fuses its local targets’
states estimate by communication with its local neighbors using
a consensus protocol. Each tracker computes the information
vector (IV) ¯̄q

i
k{0} = (P̄i

k,0)−1x̂ik,0 and the corresponding
information matrix (IM) Ω̄

i
k{0} = (P̄i

k,0)−1 prior to initiating
the consensus protocol. After computing these quantities, the
tracker instigates a consensus protocol similar to Equation 6
and Equation 7 to arrive at a refined state estimate of the tracked
targets. The trackers interchange information as follows:

¯̄q
i
k{l + 1} =

∑
j∈N(i)[k]∪i

[Ā[k]]i,j ¯̄q
j
k{l} (60)

¯̄Ω
i

k{l + 1} =
∑

j∈N(i)[k]∪i

[Ā[k]]i,j
¯̄Ω
j

k{l}. (61)

After performing η epochs in the consensus protocol, the
posteriori estimates of the targets’ state vector x̂ik|k and the

posteriori estimation error covariance matrix P̄i
k of ī can be

computed as x̂ik|k = ( ¯̄Ω
i

k{η})−1¯̄q
i
k{η} and P̄i

k = ( ¯̄Ω
i

k{η})−1.
Observe that the distributed Kalman filter based formulation
presented here comprise of fewer computations compared to the
ones described in Section III-B. Also, the information vector
and matrix associated with the standard Kalman filter contains
complete information about the state of the targets. In other
words, given a information vector and matrix, the corresponding
the targets’ state estimate and estimation error covariance matrix
can be uniquely determined. On the contrary, the SIV and SIM
introduced in Section III-B alone is insufficient to calculate the
corresponding state estimate and estimation error covariance
matrix.
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