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Abstract—We address the problem of maintaining resource
availability in a networked multi-robot team performing dis-
tributed tracking of an unknown number of targets in a
bounded environment. Robots are equipped with sensing and
computational resources enabling them to cooperatively track a
set of targets using a distributed Probability Hypothesis Density
(PHD) filter. We use the trace of a robot’s sensor measurement
noise covariance matrix to quantify its sensing quality. While
executing the tracking task, if a robot experiences sensor quality
degradation, the team’s communication network is reconfigured
such that the robot with the faulty sensor may share information
with other robots to improve the team’s target tracking ability
without enforcing a large change in the number of active com-
munication links. A central system monitor executes the network
reconfiguration computations. We consider two different PHD
fusion methods and propose four different Mixed Integer Semi-
Definite Programming (MISDP) formulations (two formulations
for each PHD fusion method) to accomplish our objective. All
MISDP formulations are validated in simulation.

I. INTRODUCTION AND RELATED WORK

MULTI-ROBOT Multi-Target Tracking (MRMTT) prob-
lems are of considerable interest due to their significant

civilian and military applications [1], [2]. This upsurge of
interest in MRMTT problems has spurred the development
of various decentralized/distributed tracking strategies which
enable robots with limited capabilities (e.g. limited field of
view, memory and data processing power) to collaboratively
perform the tracking task efficiently and with robustness [3]–
[8]. A typical MRMTT framework consists of a set of static
or mobile robots (“trackers”) which are spatially distributed
over a domain of interest while being able to communicate
with each other. Each robot runs a local tracking algorithm
which estimates the state of the targets in the environment
using the measurements received from its field of view.
Apart from performing local Multi-Target Tracking (MTT),
the robots disseminate their information about the targets to
their neighboring robots iteratively. Consequently, each robot
refines its estimate on targets’ state by appropriately fusing its
local target information with the information received from
its neighbors. Clearly, for any distributed strategy to function,
the communication graph associated with the robots should be
connected. Distributed multi-target tracking strategies elimi-
nate the need for a centralized data processing station which
was otherwise necessary for the fusion of measurement data
collected by the robots to estimate the state of targets present in
the environment. Moreover, distributed strategies have shown
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Fig. 1: Our setting for resilient target tracking.

improved robustness to external noise [9], and are resilient to
failures [10].

Three challenges are particularly important in multi-target
tracking: 1) new targets may appear in the environment and
existing ones may leave the environment (number of targets are
varying); 2) measurements may be generated by non-target ob-
jects (measurement clutter or false alarms); and 3) a robot may
fail to detect targets in its Field Of View (FOV) (missed de-
tection). Different multi-target tracking techniques have been
proposed which can tackle these challenges e.g. Multiple Hy-
pothesis Tracking (MHT), Joint Probabilistic Data-Association
(JPDA) [11], and Random Finite Set (RFS) based Probability
Hypothesis Density (PHD) filter [12], [13]. We follow a PHD
filter formulation in this paper. The elegant formulation of
PHD filters due to Mahler [12] provides a principled way to
formulating the target tracking problem as a Bayesian filtering
problem. In simple terms, the probability hypothesis density
of a target position state (modeled as a random finite set) is
the target population density in an environment whose integral
over a region yields the expected number of targets in that
region. A consensus-based decentralized strategy is employed
so that the robots collaboratively estimate the number of
targets in the environment [14], [15]. It is noteworthy that,
unlike the traditional target tracking algorithms (e.g. MHT,
JPDA), the PHD filter does not track individual target tracks.
Instead, it estimates the density of the targets over time rather
than the motion of individual targets. However, in recent times,
using labeled random finite sets, researchers have extended
PHD filters to enable tracking of individual targets [16], [17].

We envision a scenario in which a team of robots running
a distributed PHD filter on-board cooperatively track a set
of unknown number of targets steering according to some
known dynamics in an environment. Moreover, the robots
are overseen by a central station which intervenes only if
a member in the robot team is affected by an event which
result in its sensor quality deterioration. We quantify a robot’s
sensor quality using the trace of robot’s sensor measurement
noise covariance matrix. The fundamental problem we address
in this paper is to attenuate the effect of a robot’s sensor
quality degradation on its target tracking performance (and
hence the tracking performance of the robot team). We attempt



to tackle this by 1) suitably reconfiguring the topology of the
robot team’s communication graph and 2) through optimal
regeneration of weights used for data fusion among the robots
(Fig 1). We refer to the event which resulted in robot sensor
quality deterioration as a detrimental event. From a control
theoretic perspective, a target tracking problem can be viewed
as a state estimation problem and accuracy of state estimation
is related to the observability of the system. The observability
of a networked system with respect to its topology has received
significant attention in recent times [18]–[20]. These results
motivated us to explore the possibility of improving the
observability of the system through reconfiguring the commu-
nication graph topology, thereby mitigating the effect of sensor
quality deterioration on the target tracking performance.

Here, we extend the abstract resilience framework intro-
duced in our previous work [21] to tackle sensor faults in
the MRMTT setting. We had previously adopted the abstract
resilience framework to handle sensor quality deterioration in
the case of single target tracking [22]. In contrast, here we
consider the more general multi-target tracking setting where
the number of targets is time varying and unknown, the robots
may receive clutter measurements or false alarms, and the
targets may successfully maneuver within robots’ FOV without
being detected. Following our abstract resilience framework
in [21], we mitigate the impact of a robot’s sensor quality
deterioration using a two-step approach. In the first step, the
robot team’s communication graph is modified such that the
modified topology is close to the original topology and the
multi-target tracking performance of the team (compared to
its performance after the “detrimental event”) is improved.
The details about the multi-target tracking performance metrics
used are described in Section IV-A. In addition, at this step, a
set of optimal weights to fuse local PHDs among the robots
in the team is also computed. The subsequent step computes a
set of coordinates for the robots to embed the communication
graph in 3D while simultaneously maximizing the robot team’s
coverage over the domain centered close to the centroid of
the estimated targets’ state PHD at that instant. Note that, our
work does not consider the possibility of a complete robot
sensor failure. However, under our framework, an almost-
complete sensor failure can be represented as a sensor with
extremely large measurement noise covariance. Moreover, we
assume that the measurement noise associated with any robot’s
sensor is always described by a zero mean probability density
function. Lastly, the robots are assumed to be able to estimate
their sensor quality. This assumption does not impose any
unreasonable restriction on the applicability of our strategy as
several techniques exist in literature for sensor fault detection
[23], [24] and degradation estimation [25].

Step one of our approach uses mixed integer semi-definite
programs (MISDPs) to formulate and solve the communi-
cation network reconfiguration problem and associated local
PHD fusion weights generation. In this article, we consider
two different kinds of local PHD fusion methods, namely:
1) Geometric Mean Fusion (GMF) [14] and 2) Arithmetic
Mean Fusion (AMF) [26]. The former PHD fusion method
(GMF) obtains the resultant PHD as the geometric mean
of the fusing local PHDs whereas the latter computes the

arithmetic mean of the fusing PHDs. In both fusion strate-
gies, each robot also runs a consensus protocol simultane-
ously to distributively estimate the number of targets in the
domain. The PHD fusion weights obtained from step one
are employed to perform the target cardinality consensus
update. Furthermore, we consider two target tracking per-
formance criteria for each fusion method which we refer to
as robot-centric and team-centric. As a result, we examine
four MISDPs: Robot-Centric Geometric Mean Configuration
generation (RCGMC), Team-Centric Geometric Mean Con-
figuration Generation (TCGMC), Robot-Centric Arithmetic
Mean Configuration Generation (RCAMC) and Team-Centric
Arithmetic Mean Configuration Generation (TCAMC). In
essence, a robot-centric approach optimizes the multi-target
tracking performance of the robot affected by a detrimental
event and team-centric approach optimizes multi-target track-
ing performance of the whole robot team, each with respect
to a suitable metric consistent with the type of fusion rule
employed. Although resilience in multi-robot systems have
received tremendous research interest [27], the concept of
resilience through reconfiguration to improve task efficacy
of the multi-robot system is recent. Through this paper, we
introduce the notion of resilience by reconfiguration into multi-
robot multi-target tracking.

II. NOTATION AND BACKGROUND

For any positive integer z ∈ Z+, [z] denotes the set
{1, 2, · · · , z}. ‖·‖ denotes the standard Euclidean 2-norm and
the induced 2-norm for vectors and matrices. ‖M‖F is the
Frobenius norm of the matrix M ∈ Rm1×m2 . Tr(M) is the
trace of matrix M . 1̄m and 0̄m are the vector of ones and
zeros with appropriate dimensions. We drop the superscripts
whenever the dimensions of the vectors or matrices are clear
from the context. |·| is used to denote the cardinality of a
set whenever it encloses a set whereas, the same notation
represents the determinant of a matrix if it encompasses a
matrix. We use the same notation also to represent the number
of Gaussian components in a Gaussian mixture. Also, E[·]
represents the expectation operator. In addition, N (z̄; µ̄,Σ)
denotes the Gaussian probability density of z̄ with µ̄ and Σ
representing the mean vector and covariance matrix respec-
tively. We use 0n

ī
to denote a vector of zeros with one at the

index i. diag(M) yields the vector containing the diagonal
elements of the matrix M . M> or (M)> is the transpose
of M . Blkdig(M1,M2, · · · ,Mn) outputs a block diagonal
matrix with the matrices M1,M2, · · · ,Mn along its diagonal.
Sm+ denotes the space of m × m symmetric positive semi-
definite matrices. Also, M � 0 implies M is positive definite.
A weighted undirected graph with non negative edge weights
G is defined using the triplet (V, E ⊆ V × V,A ∈ R|V|×|V|≥0 ),
where A is the weighted adjacency matrix of the graph.
E = (V × V) \ E is the edge complement of G. A matrix
M is doubly stochastic if its rows and columns sum to unity
[28].

A. Random finite set theory
In this section, we review the mathematical background on

random finite set theory required to understand the multi-target



framework described in this paper. A rigorous treatment on the
subject can be found in [11], [29] and the references therein.
A RFS is a random variable whose realizations are sets with
finite cardinality. In a multi-tracking application, RFS are used
to model the set of target states and the set of measurements
obtained from them at various time instants.

A random finite set X can be characterized using a multi-
object density function f(X ). Unlike a random vector, the
multi-object density function associated with a random set
is invariant under arbitrary permutation of the elements in
the set. Although the multi-object density function completely
characterizes a RFS, using the multi-object density function for
filtering application is in general intractable due to the high
combinatorial complexity involved [12]. Hence, approximate
simpler methods are inevitable in practise. A common tractable
approximation used to perform filtering on RFS is known as
the probability hypothesis density or intensity function filter.
The probability hypothesis density function v(x̄) is the first
statistical moment of f(X = {x1, x2, · · · , xn}) over the RFS
X , where the set integral [14], [29] is applied to compute
the statistical moment. An important and useful property of a
PHD is that its integral over R ⊆ X results in the expected
number of targets in R. Specifically,

∫
R v(x̄)dx̄ = E[|X ∩R|].

To further reduce the computation burden, it is assumed that
a PHD can be approximated using the following weighted
finite series expansion, v(x̄) ≈

∑imax
i=1 αiφi(x̄), with imax

non-negative weights αi and basis functions φi(x̄) such that∫
X φi(x̄)dx̄ = 1. It is straightforward to see that,

E[|X |] ≈
imax∑
i=1

αi. (1)

When the Gaussian function takes the role of the basis function
φi(x̄) then PHD filter is referred in literature as Gaussian
Mixture PHD (GM-PHD) [16]. In the room of this paper, we
use a Gaussian mixture representation for the PHD filter. This
choice is driven by the fact that the GM-PHD filter equations
are similar to the standard Kalman filter equations which is
well suited for our MRMTT resilience framework.

III. PROBLEM FORMULATION

We consider a team of n robots whose labels belong to
{1, 2, · · · , n} tasked with tracking unknown and time-varying
τk number of targets (at the kth time step). The team monitors
and performs the tracking task over a compact Euclidean
space D for a time period of T epochs. However, the robots
in the team can maneuver in the 3D space. To keep the
computations simple, we confine D to be a subset of R2.
Nevertheless, the formulations presented in this paper can
be easily generalized to higher dimensions. Since the set of
target states can be random, their collection is modeled using
a random finite set (RFS) Sk = {s̄1, s̄2, · · · , s̄τk}, where
s̄i ∈ R4 (position and velocity) models the state of the ith

target that exist at time step k. We refer to the robot team
that tracks the moving targets as the tracker team and the
robots as trackers. Let x̄ι denotes the triplet position vector
[xιk, y

ι
k, z

ι
k] ∈ R3 of robot ι ∈ [n], then the set {x̄[n]} contains

the positions of all trackers. Also, ρι represents the robot with

label ι ∈ [n]. We assume that the trackers are equipped with
localization capabilities which enable them to localize with
reasonable accuracy in the environment. Since the tracker team
performs Distributed Multi-Target Tracking (D-MTT) through
inter-robot communication, they are equipped with resources
required for communication. Also, we assume perfect inter-
robot communication among the trackers in the tracker team.

In this paper, we model the FOV of ρι as a disc of
radius dιsen. Now if ρι is stationed at x̄ιk, then pιD,k(s̄|x̄ιk)
denotes the probability of detection of a target with state
s̄ by ρι at time k. pιD,k(s̄|x̄ιk) = 0 if the target (with
state s̄) lies outside the FOV of ρι and pιD,k(s̄|x̄ιk) ≤ 1
otherwise. When ρι flawlessly detects a target, its sensor
gives a measurement z̄ distributed according to the probability
density function h(z̄|s̄, x̄ιk, k). For the computations performed
in this paper, we assume that h(z̄|s̄, x̄ιk, k) can be expressed
as N (z̄;Hι

ks̄, R
ι
k), where Hι

k is the sensor output matrix of
ρι. Rιk is the covariance matrix of a Gaussian distribution
modeling the sensor noise characteristics of ρι. Furthermore,
we assume that ρι receives at most one measurement per
target present in its FOV at a time instant. Since the set of
target measurements received by each tracker robot within
its FOV is time-varying, we use a RFS to represent the set
of measurements. Let Zιk = {z̄ιk,1, z̄ιk,2, . . . , z̄ιk,|Zιk|} denote
the RFS of the set of measurements obtained by ρι due the
targets present in its FOV at time step k. Note that, |Zιk| is
less than or equal to the number of targets present in ρι’s FOV
at time k. In addition to the measurements from the targets, a
tracker may also gather false measurements due to non-target
objects present in the environment. The set of false or clutter
measurements acquired by ρι is also modeled using a RFS
Aιk = {c̄ιk,1, c̄ιk,2, . . . , c̄ιk,|Aιk|}. Hence, the total measurements
obtained by ρι at time k can be represented using the RFS
Z̄ιk = Zιk ∪ Aιk. Let cιk(z̄) denotes the PHD associated with
Aιk. Furthermore, we account for new targets intruding into
the domain using the RFS Bk and the associated PHD bk(s̄).
Finally, pS,k(s̄k−1) is the probability that a target with state s̄
at time k − 1 is lingering around in the environment at time
k. In essence, pS,k(s̄k−1) accounts for targets surviving in the
environment.

Let the time varying undirected graph G[k] =
(V, E [k], Au[k]) model the communication network of
the tracker team at the kth time step (k ∈ [T ]). Note that
we use “time step”, “time” and “epoch” interchangeably in
this paper. The node set V is isomorphic to the tracker team
label set [n]. An edge (i, j) is included in the edge set E [k]
if ith robot communicates with the jth robot and vice versa
at time k. We denote the communication range of trackers as
dmc > 0 . The neighbor set of node i in G[k] is defined as
N(i)[k] = {j ∈ V : (i, j) ∈ E [k]}. The interaction between
nodes in a graph can also be represented using an unweighted
adjacency matrix. The unweighted adjacency matrix of G[k]
is denoted by Au[k].

A. Distributed Multi-Target Tracking (D-MTT)
In general, a MTT problem can decomposed into two

estimation problems: 1) estimation of the number of targets



present in the environment and 2) estimation of targets’ state.
The PHD filter is a computationally efficient way to simulta-
neously solve both estimation problems in a tractable way. If
multiple trackers are employed to monitor a region of interest
for intruders, then MTT can be performed distributively with-
out the use of a centralized data fusion center. As mentioned
earlier, in distributed multi-target tracking, each tracker runs a
local PHD filter using its measurements obtained for its field
of view and transmits relevant information about its local PHD
filter to its neighboring trackers. The neighboring trackers then
update their local PHDs by fusing the received information
with their PHDs. In this paper, we examine two different
PHD fusion methods proposed in literature for our resilience
framework, namely, geometric mean fusion (GMF) [14] and
arithmetic mean fusion (AMF) [26]. Interestingly, both fusion
strategies can be elegantly derived as optimal solutions to
two different minimization problems involving the weighted
Kullback-Leibler divergence (KLD) between the fusing multi-
object densities [30]. Furthermore, AMF and GMF do not
double-count information as long as their fusing weights sum
to unity [31]. In the forthcoming subsections, we describe
the local PHD filter employed by each tracker and the two
different PHD fusing strategies used in this paper.

B. Tracker local PHD filter

Analogous to a Kalman filter, a PHD filter also consists
of a prediction step and an update or innovation step. In the
prediction step of the PHD filter, PHD associated with the
target states RFS is updated based on the target dynamics and
the target birth RFS Bk. Subsequently, in the innovation step,
the targets’ state RFS PHD is refined using the measurements
received from the targets. We assume that every target in the
environment follows the following standard linear state space
dynamics equation

s̄k+1 = Fks̄k +Gkūk + w̄k, (2)

where s̄k ∈ Rsa and ūk ∈ Rua are the state and the
input vectors of a target respectively. Fk ∈ Rsa×sa and
Gk ∈ Rsa×ua are the state transition matrix and input matrix
of appropriate dimensions respectively. w̄k ∈ Rsa is the zero
mean normally distributed random vector with the covariance
matrix Qk ∈ Rsa×sa (w̄k ∼ N (0̄, Qk)) modeling the process
noise.

In D-MTT, each tracker maintains and updates a local PHD
filter. The prediction and update PHD filter equation associated
with a tracker ρι can be mathematically expressed as [11],
[12],

vιk|k−1(s̄) = bk(s̄)+∫
pS,k(s̄k−1)f(s̄|s̄k−1, ūk−1)vik−1|k−1(s̄k−1)ds̄k−1 (3)

vιk|k(s̄) = (1− pιD,k(s̄|x̄ιk))vιk|k−1(s̄)+∑
ζ̄∈Z̄ιk

pιD,k(s̄|x̄ιk)h(ζ̄|s̄, x̄ιk, k)vιk|k−1(s̄)

cιk(ζ̄) +
∫
pιD,k(s̄|x̄ιk)h(ζ̄|s̄, x̄ιk, k)vιk|k−1(s̄)ds̄

, (4)

f(s̄|s̄k−1, ūk−1) is the probability of occurrence of target state
s̄ at time k given the previous states and inputs, derived

using Eq 2. Eq 3 and Eq 4 are the prediction and update
or innovation equations respectively.

Despite the fact that, in general, it is hard to further
simplify the above equations, a closed form expression can
be derived if the PHDs are assumed to be Gaussian Mix-
tures (GM), and target motion and measurement models
are assumed to be linear [32]. As indicated earlier, we
adopt a GM approximation for the PHDs used in the pa-
per. Thus vιk|k(s̄) ≈

∑|vιk|k|
i=1 α

ι,(i)
k|k N (s̄; µ̄

ι,(i)
k|k , P

ι,(i)
k|k ) and

bk(s̄) ≈
∑|bk|
i=1 α

b,(i)
k N (s̄; µ̄

b,(i)
k , P

b,(i)
k ). Also, we prescribe

that cιk(ζ̄) = λιc,k|FOV |ιpFOV (ζ̄), where pFOV (ζ̄) is the
probability density function of the occurrence of clutter mea-
surements in ρι’s FOV (assumed to be uniform in this paper),
|FOV |ι is the “volume” of its FOV and λιc,k is the expected
number of clutter measurements per unit FOV volume. For
clarity of presentation, hereafter, we restrict our attention to
tracker state independent pιD,k(s̄|x̄ιk, k) and pS,k(s̄k−1), the
formula for more general case can be found in [32, Section
III-E]. Under these assumptions and approximations Eq 3 and
Eq 4 can be written as,

GM-PHD filter prediction:

vιk|k−1(s̄) = bk(s̄) + vιS,k|k−1(s̄) (5)

vιS,k|k−1(s̄) =pS,k

|vιS,k|k−1|∑
i=1

α
ι,(i)
k|k−1N (s̄; µ̄

ι,(i)
k|k−1, P

ι,(i)
k|k−1) (6)

µ̄
ι,(i)
k|k−1 = Fk−1µ̄

ι,(i)
k|k−1 +Gk−1ūk−1 (7)

P
ι,(i)
k|k−1 = Qk−1 + Fk−1P

ι,(i)
k−1|k−1F

>
k−1, (8)

GM-PHD filter innovation:

vιk|k(s̄) = (1− pιD,k)vιk|k(s̄) +
∑
ζ̄∈Z̄ιk

vιD,k(s̄; ζ̄) (9)

vιD,k(s̄; ζ̄) =

|vιD,k|∑
i=1

α
ι,(i)
k|k (ζ̄)N (s̄; µ̄

ι,(i)
k|k (ζ̄), P

ι,(i)
k|k ) (10)

α
ι,(i)
k|k (ζ̄) =

pιD,kα
ι,(i)
k|k−1N (ζ̄;Hι

kµ̄
ι,(i)
k|k−1, S

ι,i
k )

cι(ζ̄) + pιD,k
∑
j α

ι,(j)
k|k−1N (ζ̄;Hι

kµ̄
ι,(j)
k|k−1, S

ι,j
k )

(11)

Sι,ik = Rιk +Hι
kP

ι,(i)
k|k−1(Hι

k)> (12)

µ̄
ι,(i)
k|k = µ̄

ι,(i)
k|k−1 +K

ι,(i)
k (ζ̄ −Hι

kµ̄
ι,(i)
k|k−1) (13)

P
ι,(i)
k|k = [I −Kι,(i)

k Hι
k]P

ι,(i)
k|k−1 (14)

K
ι,(i)
k = P

ι,(i)
k|k−1(Hι

k)>(Sι,ik )−1. (15)

[32, Table 1] gives a pseudocode for the Gaussian mixture
PHD filter implementation. Notice that Eq 7-Eq 8 and Eq 12-
Eq 15 are similar to the prediction and innovation steps of a
standard Kalman filter respectively [11]. Finally, the number
of Gaussian components (GCs) in vιk|k(s̄) are reduced for
computational efficiency by merging closer GCs and pruning
GCs with low weights (see [32, Section III.C, Table II]).

C. Local PHD fusion
In a PHD fusion method, the estimated local targets’ state

PHD vιk|k(s̄) of ρι is fused with the estimated local targets’



state PHDs of other neighboring trackers in the tracker team.
From hereon, unless otherwise specified, PHD or local PHD
mean local targets’ state PHD. Certainly, fusing all the PHD
Gaussian components (GCs) of ρι with all the PHD Gaussian
components received from its neighbours is inefficient in
terms of both computational and communication load. To
this end, we follow the method proposed in [26]. According
to the strategy delineated in [26], each tracker disseminates
only the highly weighted GCs or Target likely GCs (T-GCs)
(that possibly corresponds to real targets) in its PHD to its
neighboring trackers. In our work, we identify the T-GCs in a
PHD using the rank rule outlined in [26]. Consequently, the
numbers of T-GCs selected equals the integer closest to the
expected number of targets according to a tracker’s local PHD.
Recall that, from Eq 1, the sum of the weights of a GM-PHD
gives the expected number of targets in the region of interest.
Let αιk =

∑
i α

ι,(i)
k|k and α̃ιk = dαιke. A neighboring tracker can

then fuse its local PHD T-GCs with the communicated T-GCs
using any established fusion method of choice [14], [33]. As
noted earlier, in this article, we focus on AM and GM based
fusion strategies described in latter subsections. In both cases,
an additional cardinality consensus scheme is simultaneously
executed and each tracker’s PHD GCs are rescaled so that the
tracker’s estimate of the expected number of targets converges
to the global average. The cardinality consensus rule can be
mathematically written as:

α̃ik(l) =
∑

j∈N(i)[k]∪ι

[Ā[k]]i,jα̃
j
k(l − 1), (16)

where [Ā[k]]i,j is the (i, j) entry of a doubly stochastic matrix
Ā[k] with the same structure as the unweighted adjacency
matrix (Au[k]) of connected graph G[k] except for the diagonal
elements. Specifically, Ā[k] is non-zero along its diagonal
and its off-diagonal elements are non-zero if and only if
the corresponding elements of Au[k] are unity. In theory,
cardinality consensus scheme shown in Eq 16 converges to
a common quantity only when l tends to infinity. However, it
is known that consensus protocols enjoy an exponential rate
of convergence [10]. Thus, a reasonable level of consensus
on the global average can be attained by iterating Eq 16 for a
sufficient number of consensus steps L. From our simulations,
we found that the team reaches a reasonable level of consensus
with L = n/2. We note that, in this paper we only consider
targets having dynamics (Eq 2) comparable with the speed of
consensus dynamics. After each consensus step l, along with
fusing the local T-GCs with the neighbor’s T-GCs (using GMF
or AMF), the PHD GCs weights of each tracker are rescaled
such that they sum to α̃ιk(l), i.e., αι,(i)k|k (l) = wια

ι,(i)
k|k (l), with

wι =
α̃ιk(l)∑
i α

ι,(i)

k|k (l)
. An analysis on the accuracy of cardinality

estimation in the cardinality consensus scheme can be found in
[15]. In following two subsections, we will delineate the two
PHD (primarily T-GCs of the PHDs) fusion strategy adopted
in our paper.

1) Geometric mean fusion: Let d1, d2, . . . , dg be a set of
probability density function defined over some state space,
then these probability density functions can be fused into
a single probability density function dGCI based on a set

of weights {ωi ≥ 0} using the generalized covariance in-
tersection fusion rule (GCI) using dGCI = C−1

∏
i∈[g] d

ωi
i ,

the normalization constant C is given by
∫ ∏

i∈[g] d
ωi
i and

[g] = {1, 2, · · · , g}. When
∑
i∈[g] ωi = 1 this fusion rule is

also referred as exponential mixture density.
Examining formula to compute dGCI , we can observe that

if the weights sum to unity then dGCI is proportional to the
geometric mean of the densities. Hence, we refer to the GCI
fusion rule as Geometric Mean Fusion (GMF). A detailed
discussion on GCI fusion can be found [14], [30] and the
references therein. Since the PHDs can be interpreted as
unnormalized probability density functions, the fused PHD can
be computed similar to dGCI with C = 1.

Suppose
∑
i1∈[g1] αi1N (s̄; µ̄i1 , Pi1),∑

i2∈[g2] αi2N (s̄; µ̄i2 , Pi2), · · ·,
∑
in∈[gn] αinN (s̄; µ̄in , Pin)

are the GM-PHDs to be fused together using GMF based
on the normalized set of weights {ωi ≥ 0}n1 . We refer to
a set of weights as normalized if the weights sum to unity.
Also, let $ denote the dimension of the mean vectors in
the GCs. Under the assumption that, raising the GM-PHD
to an exponent approximately equals raising the GCs in the
GM-PHD to the exponent and summing them [34] or in
mathematical terms∑

i∈[g]

αiN (s̄; µ̄i, Pi)

ω ≈∑
i∈[g]

[αiN (s̄; µ̄i, Pi)]
ω
, (17)

and if [g1···n] , [g1] × [g2] × ...[gn] then, we derive the
following formula to compute the resultant GM-PHD (vGMF )
obtained by fusing the GM-PHDs according to GMF:

vGMF ≈
∑

(i1,i2,...,in)∈[g1···n]

αi1,···,inN (s̄; µ̄i1,···,in , Pi1,···,in)

(18)

where

µ̄i1,···,in = (Pi1,···,in)
−1

n∑
j=1

ωj(Pij )
−1µ̄ij (19)

Pi1,···,in =

 n∑
j=1

ωj(Pij )
−1

−1

(20)

αi1,···,in = K

 n∏
j=1

(αij )
ωj

√√√√ ∣∣∣2π Pijωj ∣∣∣
|2πPij |wj

 (21)

K = exp (K̃ − K̄); K̃ = − 1
2 (n$ ln (2π)

−
∑n
j=1 ln

∣∣ωj(Pij )−1
∣∣ ∑n

j=1 ωj(µ̄ij )
T (Pij )

−1µ̄ij

)
and K̄ = − 1

2

(
$ ln (2π)− log|Ω|+q̄T (Ω)

−1
q̄
)

; with
Ω =

∑n
j=1 ωj(Pij )

−1 and q̄ =
∑n
j=1 ωj(Pij )

−1µ̄ij . The
derivation of Eq 18 is included in Appendix A. The
assumption outlined in Eq 17 holds reasonably well when
the centers between the distinct GCs in a GM-PHD are well
separated [14], [34]. In practice, the well separatedness of
GCs in a GM-PHD are ensured by fusing the GCs which
are close in the Mahalanobis distance [14] sense [34]. From
Eq 18, one can conclude that the number of GCs in the fused



GM-PHD exponentially increases at each fusion step, which
would easily saturate storage and computational capabilities
of a tracker. The common approaches devised to control
the growth of GCs in GM-PHD are merging GCs which
are close is some sense (usually in terms of Mahalanobis
distance [14], [32]) and pruning GCs whose weights fall
below a pre-defined threshold. Here, we follow the latter and
prune GCs in the fused GM-PHD which have low weights
(α1,···,n
i1,···,in � 1).

Remark 1. As noted earlier, an important weakness of GMF
is the exponential growth of GCs in the fused GM-PHD. In
addition, a more serious defect of GMF as pointed out in [35]
is its susceptibility to misdetections. Hence, a misdetection by
single tracker could potentially jeopardize the MTT perfor-
mance of other trackers significantly.

2) Arithmetic mean fusion: If one utilizes the arithmetic
mean fusion (AMF) rule to fuse the probability density
functions {d1, d2, · · · , dg} defined over some space to yield
a single probability density function over the state space,
according to a set of normalized weights, then the resultant
fused probability density function dAMF is given by dAMF =∑
i∈[g] ωidi.
Akin to the GMF case, the AMF rule used to fuse proba-

bility density functions is applied to fuse GM-PHDs. Fusing
n GM-PHDs according to AMF yields,

vAMF =
∑
j∈[n]

ωj

∑
i∈[gj ]

αjiN (s̄; µ̄ji , P
j
i )

 . (22)

According to Eq 22, fusing two GM-PHDs with g1 and g2

GCs create a GM-PHD with g1+g2 GCs whereas, the GMF of
the GM-PHDs result in a GM-PHD containing g1 × g2 GCs.
Hence, in general, the number of GCs resulting from AMF
is much smaller compared to the GMF case. The number of
GCs in the AMF fused GM-PHD can be further reduced by
fusing GCs which potentially describe the same target using
the following Gaussian Mixture Reduction (GMR) technique.

Without loss of generality, we assume that the first GC from
each GM-PHD to be fused represented as α1

1N (s̄; µ̄1
1, P

1
1 ),

α2
1N (s̄; µ̄2

1, P
2
1 ), · · ·, αn1N (s̄; µ̄n1 , P

n
1 ) describe the same tar-

get due to their closeness to each other in some sense. In
practice, two GCs are considered close if the Mahalanobis
distance between them is less than a pre-defined thresh-
old. These GCs are combined and reduced to a single GC
αGMR

1 N (s̄; µ̄GMR
1 , PGMR

1 ) using the associated normalized
weights {ω1, ω2, · · · , ωn}. Then [26],

αGMR
1 =

∑
i∈[n]

αi1 (23)

µ̄GMR
1 =

∑
i∈[n] α

i
1µ̄
i
1∑

j∈[n] α
j
1

(24)

PGMR
1 =

∑
i∈[n]

ωiP i1. (25)

It has been shown in [26] that, as long as each GC involved
in the fusion process is “conservative/consistent” with respect
to an estimate on the target state, the fused GC is also

conservative (see [36] for the details on conservative/consistent
estimate pair ). Roughly speaking, a GC is “conservative” with
respect to target state estimate if the covariance of the GC is
larger than or equal to the covariance of target state estimate
error. More precisely, if ã is the target state estimation error
then the GC with covariance P is consistent with respect to
target state estimate if P−E(ãã>) is positive semi-definite. In
summary, AMF GC avoids underestimating the actual estimate
errors in mean square sense, and are resilient to misdetections
[37].

D. Tracking under Sensor Quality Deterioration
As stated in Section I, we consider the problem of attenu-

ating the effect of a tracker’s sensor quality deterioration on
multi-target tracking performance through appropriate recon-
figuration of the tracker team. In this subsection, we will define
the notion of tracker team reconfiguration and sensor quality
deterioration used in this paper.

We define the tuple (G[k], Ā[k]) as the configuration of
the tracker team at the kth time step and denote it by C[k].
Ā[k] is a doubly stochastic matrix whose elements are used as
normalized weights for the local PHD fusion, and to execute
the cardinality consensus operations outlined in Eq 16. During
the multi-target tracking task, executed for a time period T ,
let nf detrimental events occur independently to arbitrary
trackers in the team. We assume that each event results in
some sensor quality deterioration. At time k, we say that ρι’s
sensor quality is deteriorated if the trace of the measurement
noise covariance matrix associated with its sensor Rιk has
increased compared to Tr(Rιk−1). In more formal terms, if
Tr(Rιk) > Tr(Rιk−1), then ρι’s sensor quality deteriorated at
time k. Recall our assumption that, the detrimental event never
introduces any bias in the tracker’s sensor measurements. The
treatment of detrimental event which results in sensor bias
is reserved for future work. Similar to [22], we consider a
sequence set F = [f1, f2, · · · , fp, · · · , fnf ], where fp indicate
the time step when the pth sensor fault occurred. We specify
that C[fp−1] is the configuration of the tracker team before the
pth detrimental event occurred. We now formally define the
problems studied in this paper. The first problem (Problem 1)
deals with reconfiguration of the tracker team such that target
tracking performance is optimal in some reasonable sense.
The second problem addresses the issue of realizing the graph
topology in 3D space while maximizing the tracker team’s
coverage over the D.

Problem 1. Configuration generation or reconfiguration:
Given that ρi experienced sensor quality deterioration at
some time fp, Ri

f+
p

is the sensor noise covariance matrix
immediately after the deterioration event, and C[fp − 1] is
the tracker configuration prior to the event, determine a new
configuration C[fp] such that,

1) G[fp] is a connected graph,
2) ‖Au[fp] − Au[fp − 1]‖2F≤ 2 × e, where e ∈ Z+ is the

number of edges that may be modified in G[fp − 1] to
obtain G[fp], and

3) tracking performance is optimized in some appropriate
sense.



Fig. 2: Basic outline of our approach. When a robot experiences
sensor quality degradation, configuration generation selects edges to
modify the communication graph. Then, formation synthesis assigns
robots to physical locations that support the desired graph topology.

Problem 2. Formation synthesis: Given a tracker team
configuration C[fp], generate coordinates that best realize the
given configuration and maximize the tracker team’s coverage
over D, subject to constraints. We defer the details of this
problem to Section IV-B.

Graph connectivity constraint is essential for the distributed
tracking computation performed over the network and thus
is included in Problem 1 [10]. The second condition enables
the user to control the communication load on the generated
configuration by tuning the parameter e. The final condition
assures improved multi-target tracking performance.

IV. METHODOLOGY

In this section, we focus on developing various strategies
for solving Problem 1 and Problem 2. In our framework,
we consider a base station that monitors the activities of the
tracker team. The base station intervenes with the team’s oper-
ation and instructs the multi-target tracking team only when a
detrimental event occurs. Similar to [21], [22] , the base station
controller adopts a dual-step scheme to arrive at a new tracker
team configuration and compute the new tracker coordinates
which best realize the new configuration in space. Akin to
[21], these steps are referred as configuration generation and
formation synthesis. The whole decision making scheme is
depicted in Fig 2. In essence, the solutions to Problem 1 and
Problem 2 are the bases for the configuration generation and
formation synthesis steps respectively.

A. Configuration Generation

In general, we classify the configuration generation strate-
gies delineated in this paper into two types: robot-centric and
team-centric. A robot-centric approach aims at improving the
tracking performance of the robot which endured the adverse
effects of a detrimental event, whereas a team-centric approach
optimizes the tracking performance of the whole team. As
described earlier, in this article, we restrict our attention to two
kinds of local PHD fusion strategies. Hence, for each fusion
strategy, we can devise either a tracker-centric or a team-
centric approach to configuration generation. We formally
formulate all the four configuration generation approaches in
this subsection. We refer the four configuration generation
approaches as Robot-Centric Geometric Mean Configuration

generation (RCGMC), Team-Centric Geometric Mean Con-
figuration generation (TCGMC), Robot-Centric Arithmetic
Mean Configuration generation (RCAMC) and Team-Centric
Arithmetic Mean Configuration generation (TCAMC). All
four configuration generations result in solving different mixed
integer semi-definite programs (MISDPs). The motivation for
this stems from the fact that network design problems are
often formulated in literature as MISDPs [38]. Note that, in the
MISDPs formulations we optimize the tracking performance
for one step PHD fusion (l = 1). We drop the dependence of
variables on time in the MISDPs for brevity. The following
theorem guides our design of the connectivity constraint in the
MISDPs (See Appendix B for the proof).

Theorem 1. If a graph containing self loops at every node is
equipped with a weighted adjacency matrix A which is doubly
stochastic then any graph isomorphic to this graph with or
without self loops is connected if and only if 1

n 1̄1̄> + I � A.

At time fp, ρι experienced a sensor fault and α =
min{α̃1

fp
, . . . , α̃ιfp , . . . , α̃

n
fp
}. As a result of Eq 16, each

tracker should have at least one GC associated with a target
up to α targets. In addition, let {P ιi }αi=1 be the covari-
ance matrices associated with α T-GCs of ρι and P̃ ι =
Blkdig(P ι1 , P

ι
2 , · · · , P ια).

1) RCGMC: The following MISDP models our robot-
centric geometric mean configuration generation approach:

minimize
A∈Sn+, ν∈R>0,

Π∈{0,1}n×n

− 01×n
ῑ A


1
αTrace((P̃ 1)−1)
1
αTrace((P̃ 2)−1)

...
1
αTrace((P̃n)−1)

 (26)

subject to A · 1̄n = 1̄n (27)
1

n
1̄1̄T + (1− ν)I � A, ν � 1 (28)

diag(Π) = 1̄n (29)

Π = ΠT (30)
[A]i,i > 0 ∀ i ∈ [n] (31)

[A]i,j ≥ 0∀ (i, j) ∈ [n]2, i 6= j (32)

[A]i,j ≤ Πi,j∀ (i, j) ∈ [n]2, i 6= j (33)

‖Π−Au[fp]‖2F≤ 2× e. (34)

The decision variables A and Π model the doubly stochastic
matrix used for the consensus protocol and the adjacency ma-
trix of the generated configuration respectively. Constraint 27
and Constraint 31 to Constraint 33 ensures that A is a
doubly stochastic matrix that is structurally equivalent to
Π. In the light of Theorem 1, Constraint 28 enforces the
generated configuration to possess a connected graph. Finally,
Constraint 34 encodes the near topology condition (condition
2) in Problem 1 into the MISDP. If ι represents the label of
the robot whose sensor quality deteriorated at fp, then with
some simple algebraic manipulation it can be easily shown
that Eq 26 results in the average over the trace of the fused
GCs according to Eq 20.

2) TCGMC: Consider the following MISDP formulation
encoding the team-centric geometric mean configuration gen-



eration strategy.

minimize
A∈Sn+, ν∈R>0,

Π∈{0,1}n×n

P̄ ,∆̄∈Sn×sa×α+

Trace(P̄ ) (35)

subject to
[
P̄ I
I ∆̄

]
� 0 (36)

A⊗ I


(P̃ 1)−1

(P̃ 2)−1

...
(P̃n)−1

 =


∆1

∆2

...
∆n

 (37)

Constraint 27− Constraint 34.

Where ∆̄ = Blkdig(∆1,∆2, · · · ,∆n) and A⊗ I results in
the Kronecker product [28] between A and the identity matrix
which matches the size of P̃ ι. Constraint 37 is the covariance
fusion rule Eq 20 for the whole team written compactly as
a single equation. In addition, Constraints 27-34 are also
required for TCGMC. The following lemma proves that
minimizing Eq 35 minimizes 1

n×α
∑n
i Trace(P i,αgm)), where

P i,αgm is the block diagonal matrix containing α number of
GMF fused GCs’ covariance matrices associated with the ith

tracker (See Appendix C for the proof).

Lemma 1. The 1
n×αTr(P̄ ) is an upper bound on

1
n×α

∑n
i Trace(P i,αgm)

3) RCAMC: Similar to Section IV-A1, we formulated
the MISDP for robot-centric arithmetic mean configuration
generation as:

minimize
A∈Sn+, ν∈R>0,

Π∈{0,1}n×n

01×n
ῑ A


1
WsTrace((P̃ 1))
1
WsTrace((P̃ 2))

...
1
WsTrace((P̃n))

 (38)

subject to Constraint 27− Constraint 34.

Here the objective function Eq 38 is a direct result of the
application of Eq 25 for ρι.

4) TCAMC: Finally, the MISDP formulation for the team-
centric arithmetic mean configuration generation can be ex-
pressed as: minimize

A∈Sn+, ν∈R>0,

Π∈{0,1}n×n

P̄ ,∆̄∈Sn×sa×α+

Trace
(
∆̄
)

(39)

subject to A⊗ I


(P̃ 1)

(P̃ 2)
...

(P̃n)

 =


∆1

∆2

...
∆n

 (40)

Constraint 27− Constraint 34.

Where ∆̄ = Blkdig(∆1,∆2, · · · ,∆n) and therefore mini-
mizing the trace of ∆̄ results in minimizing sum of the traces
of AMF fused covariance matrices of the trackers in the team.

B. Formation Synthesis

Once a new configuration is generated, we assign a physical
location to each robot to maximize the team’s non-overlapping

(a) Before Failure (Overhead)

(b) After Failure (Overhead)

Fig. 3: Screenshots of a simulation in which a robot team of five
tracks targets moving below them (overhead view). A robot’s sensing
area is depicted as a light blue circle. The target birth areas are
depicted as light gray circles in the corners. The true target positions
are denoted as black ’+’s. The target position estimates are denoted
as orange circles. The robots themselves are denoted as dark blue
triangles. The figure on the top depicts the formation before the
occurrence of a sensor deterioration event. The corresponding figure
on the bottom portrays the formation after 1) sensor deterioration is
detected, 2) a new communication edge is chosen, and 3) the robots
move to their new locations.

coverage of the space. In this assignment problem, we impose
constraints to ensure that connected robot pairs remain within
communication distance dmc of each other, and that the
distance between all robot pairs exceeds ds to avoid collision.
An additional constraint is added to ensure that each robot is
no more than E distance away from the centroid of the T-GCs.

This produces the following constrained optimization prob-
lem:

max
{X|n|}

π
∑
i∈V

(disen)2−
∑
j∈V6=i

(2disen − ‖Xi −Xj‖)2

2

 (41)

subject to ds ≤ ‖Xi −Xj‖ ≤ dmc ∀ (i, j) ∈ E (42)

ds ≤ ‖Xi −Xj‖ ∀ (i, j) ∈ E (43)

Bmin ≤ Xi ≤ Bmax ∀ i ∈ V (44)
‖Xteam −Xtarget‖ ≤ E (45)

where disen is the radius of the circular field of vision of
tracker, ρi, Xteam is the average position of the robot team,
Xtarget is the centroid of the T-GCs of the failure node,
E is the user-defined maximum distance the team can be
from Xtarget, and Bmin, Bmax ∈ R3 are the minimum
and maximum extents of an axis-aligned bounding box, with
the operator ≤ applied elementwise in Eq 44. We solve the
formation synthesis optimization problem Eq 41 - Eq 45
following the simulated annealing approach described in [21].



OSPA NMSE
Method Mean Delta St. Dev Delta Method Mean Delta St. Dev Delta

<50%

RCAMC 0.189 0.425

<50%

RCAMC 0.456 0.374
GreedyAMC 0.237 0.554 GreedyAMC -0.208 0.504
RandomAMC 0.179 0.716 RandomAMC 0.110 0.441
TCAMC 0.594 0.355 TCAMC -0.367 0.330
RCGMC 0.154 0.372 RCGMC 0.567 0.646
GreedyGMC 0.654 0.470 GreedyGMC -0.472 0.413
RandomGMC 0.657 0.503 RandomGMC -0.432 0.455
TCGMC -0.006 0.483 TCGMC 0.183 0.554

>50%

RCAMC 0.296 0.317

>50%

RCAMC 0.450 0.321
GreedyAMC 0.231 0.544 GreedyAMC 0.494 0.285
RandomAMC 0.209 0.688 RandomAMC -0.124 0.556
TCAMC 0.539 0.608 TCAMC -0.302 0.519
RCGMC 0.485 0.631 RCGMC -0.293 0.522
GreedyGMC 0.578 0.577 GreedyGMC -0.352 0.482
RandomGMC 0.548 0.569 RandomGMC -0.353 0.488
TCGMC 0.603 0.235 TCGMC 0.210 0.278

TABLE I: Summary statistics (mean and standard deviation) for the difference in NMSE and OSPA by strategy.

Fig. 4: The distribution of difference (normalized between -1 and
1) in NMSE and OSPA between the baseline scenario and each
configuration strategy at different graph edge densities. A positive
average difference means that the strategy resulted in a performance
improvement. Note that results from all robot team sizes are ag-
gregated here. Summary statistics for these results are presented
in Table I. For lower edge densities, the, TCAMC, GreedyGMC,
and RandomGMC strategies perform best in terms of OSPA, but
with large standard deviation in results for GreedyAMC and Ran-
domAMC. At higher edge densities, the RCGMC and TCGMC
show improved OSPA and are comparable in performance to the
GreedyGMC and RandomGMC strategies. In terms of NMSE,
the RCAMC strategy shows the most consistency in improved
performance over the baseline.

V. SIMULATION

To validate our approach, we conducted multiple simula-
tions of a robot team tracking multiple moving targets. A target
would be born in a random corner of 2D space with bounding
box of x ∈ [−50, 50], y ∈ [−50, 50]. The target would then
move in a straight line trajectory to the opposite corner of the
bounding box. The number of new targets born at each time

step was determined by a random Poisson point process with
the Poisson parameter value one. The initial position for a new
born target was chosen according to a Gaussian distribution
about a 20 unit radius of each corner. Fig 3 illustrates this
target birth area.

For the local GM-PHD filter, we set the survival probability
of each target to 0.98 and, detection probability of each target
to 0.95 if within the field of vision of a robot and 0 otherwise.
The clutter generated at each time step was determined by a
random Poisson point process in the robot’s field of vision with
the Poisson parameter value 5. Targets within Mahalanobis
distance of 0.2 were merged together at each local GM-PHD
filter iteration and during fusion. Targets with weights less
than 1e-6 were pruned.

We initiated the same Hι
k and Rιk for each robot in the

tracker team. We used L = n/2 for the consensus step,
where n is the size of the team. Parameters chosen for the
configuration generation and formation synthesis problems
were ne = 1, ds = 10, dmc = 25, and dιsen = 20 ∀ι ∈ [n],
with a bounding box of x ∈ [−50, 50], y ∈ [−50, 100], and
z ∈ [0, 100].

To simulate deteriorating sensor quality for ρι, we modified
its covariance matrix Rιk by adding a random positive definite
matrix. We generated various deterioration event sequences
for robot teams of n ∈ {5, 6, 7, 10, 12, 15, 20, 25, 30} where a
random robot was chosen at every f time step of the simulation
to experience sensor deterioration. Fig 3 shows an overhead
view of a single simulation trial with 5 robots.

For all configuration generation approaches, we simulated
30 deterioration sequences for each size robot team. We
evaluate each configuration generation approach against a
baseline scenario in which no edges are added at failure.
Additionally, we compare our approaches to simple random
strategy and a greedy strategy. For the random strategy, a
single edge is added between the robot experiencing sensor
deterioration and another robot selected at random. Depending
on the fusion method used, we refer to the random strat-



N 5 7 10 15 20 30

AMC agent 0.80 0.93 1.67 4.04 4.42 4.00
team 0.88 1.17 1.78 4.06 4.53 4.07

GMC agent 1.00 1.11 1.80 4.08 4.65 4.14
team 7.12 27.52 114.01 451.03 2400.20 10109.2

TABLE II: Average clock time (in seconds) for computation
of configuration generation and formation synthesis problems
after a single instance of sensor deterioration for varying team
sizes. Computation time increases with larger team sizes. All
methods take approximately one to four seconds to compute
with the exception of the TCGMC method, which may take
several hours with very large teams.

egy as Random Arithmetic Mean Configuration Generation
(RandomAMC) and Random Geometric Mean Configuration
Generation (RandomGMC).

For the greedy strategy, a single edge is added to the
network between the robot which experienced sensor dete-
rioration and the robot with lowest covariance at the time of
deterioration. Depending on the fusion method used, we refer
to the greedy strategy as Greedy Arithmetic Mean Configura-
tion Generation (GreedyAMC) and Greedy Geometric Mean
Configuration Generation (GreedyGMC).

Each trial was initialized with a line graph. The target
dynamics and distributed GM-PHD filter were implemented
in Python. For the agent-centric and team-centric approaches,
the MISDP problem was solved using our own custom imple-
mentation of branch-and-bound written in Python with PICOS
as the optimization problem modeling interface and MOSEK
as the semi-definite programming solver. In both approaches,
the simulated annealing technique for formation synthesis was
implemented in Python.

All simulation computations were performed on a 64-bit
Ubuntu 18.04 desktop with two 3GHz Intel Core Xeon Gold
6154 CPU and 256 GB RAM. Additionally, we employed
GNU-Parallel to parallelize our computations on this machine.
Average clock time for computation on this machine for
a single round of configuration generation and formation
synthesis of varying team sizes are presented in Table II. We
observed that the computation time increases with robot team
size as expected, given the general NP-hard nature of MISDP
problems [39].

To quantify performance, we used the optimal subpattern
assignment (OSPA) distance [40] that evaluates the estimation
error of the target positions after PHD fusion. The OSPA
metric represents the distance between two sets. In our case,
this is the distance between the set of the true target positions
and the set of the T-GCs means. For the OSPA calculation,
we use cutoff parameter c = 5 and order parameter p = 1.

Additionally, we evaluate the target set cardinality estimate
of the team using the normalized mean squared error (NMSE).
The results are presented in Fig 4 with summary statistics
presented in Table I.

In comparing improvement in OSPA between strategies,
the strategies using geometric mean fusion generally per-
formed better than strategies using arithmetic mean fusion.
Also, under the OSPA metric, we infer that the team-centric
strategies perform better than their robot-centric counterpart.

For lower edge densities, the TCAMC, GreedyGMC, and
RandomGMC strategies performed relatively better than oth-
ers. However, the RCGMC and TCGMC strategies improve
considerably in OSPA at higher edge densities. On an average,
at higher densities the TCGMC strategy outperformed even
the GreedyGMC and RandomGMC and with smaller stan-
dard deviation. This is due to the scarcity in the availability of
new edges to be added as the network becomes saturated. The
random and greedy strategies will only add edges to increase
connectivity to the robot experiencing sensor deterioration.
In contrast, the team-centric strategy can find the best edge
that overall improves the sensing performance of the network.
Between the TCAMC and TCGMC strategies at higher edge
densities, TCGMC yields better OSPA. Note that, due to the
difficulty in formulating and solving optimization problems
which directly involve the set distance-based OSPA metric,
neither in the “robot-centric” nor in the “team-centric” for-
mulations was the OSPA directly optimized. Instead, in both
formulations we used surrogate objective functions based on
the covariance of the GCs of GM-PHD associated with the tar-
gets. Our results illuminate the interplay between the proposed
strategies and the edge density of the tracker network.

In selecting which strategy to use when optimizing for
OSPA, we suggest the TCAMC strategy at lower edge den-
sities and reserve the TCGMC strategy for high edge density
situations. Note however that the TCGMC strategy may not
be suitable for larger networks in which computation time
is limited, due to the large time complexity of computing
a solution for this strategy. Although as stated earlier AMF
is more robust than GMF, this aspect is not reflected in our
results. A potential reason for this could be that the GCs used
for fusion may not be consistent.

In selecting which strategy to use in situations where only
the number of detected targets is the prime focus, we suggest
the RCAMC strategy as it showed the most consistency in
performance improvement of NMSE compared to all other
strategies across varying edge densities.

VI. CONCLUSION

This paper presents a novel strategy that facilitates a team of
robots performing multi-target tracking to respond to a sensor
fault in one of the team members by reconfiguring the team’s
communication network. The reconfigured team attenuates
the adverse effect of sensor quality deterioration on multi-
target tracking performance of the team. We presented four
different MISDP formulations to compute the new robot team
configuration. All formulations were validated in simulation
and compared to each other. In future, we plan to validate our
approach on our multi-robot testbed [41].

APPENDIX A

Derivation of vGMF (Eq 18): By definition,

vGMF =

n∏
j=1

 ∑
ij∈[gj ]

αijN (s̄; µ̄ij , Pij )

ωj , (46)



due to the assumption in Eq 17 the expression can be approx-
imated as

vGMF ≈
n∏
j=1

 ∑
ij∈[gj ]

[
αijN (s̄; µ̄ij , Pij )

]ωj . (47)

From [14, Eq 36], this can be further simplified to:

vGMF ≈
n∏
j=1

 ∑
ij∈[gj ]

αωjij N (s̄; µ̄ij ,
Pij
ωj

)

√√√√ ∣∣∣2π Pijωj ∣∣∣
|2πPij |wj


 .

Due to distributed property, the above equation can be ex-
pressed as the summation of various GC products. Mathemat-
ically,

vGMF ≈
∑

(i1,i2,...,in)∈[g1···n]

αω1
i1
N (s̄; µ̄i1 ,

Pi1
ω1

)

∣∣∣2π Pi1ω1

∣∣∣ 12
|2πPi1 |

w1
2

αω2
i2
N (s̄; µ̄i2 ,

Pi2
ω2

)

∣∣∣2π Pi2ω2

∣∣∣ 12
|2πPi2 |

w2
2

· · ·

αωnin

∣∣∣2π Pinωn ∣∣∣ 12
|2πPin |

wn
2

N (s̄; µ̄in ,
Pin
ωn

)

 ,
where [g1···n] , [g1]× [g2]× [g3]...[gn]. Thus if we derive the
canonical expression for the product of GCs associated with
the indices i1, i2, ..., in then, vGMF can be expressed as the
summation of GC products. Also, it can be shown that the
product of GCs also result in a GC [42]. Let

αi1,···,inN (s̄; µ̄i1,···,in , Pi1,···,in) = αω1
i1
N (s̄; µ̄i1 ,

Pi1
ω1

)

∣∣∣2π Pi1ω1

∣∣∣ 12
|2πPi1 |

w1
2

αω2
i2
N (s̄; µ̄i2 ,

Pi2
ω2

)

∣∣∣2π Pi2ω2

∣∣∣ 12
|2πPi2 |

w2
2

· · ·αωnin N (s̄; µ̄in ,
Pin
ωn

)

∣∣∣2π Pinωn ∣∣∣ 12
|2πPin |

wn
2

. Now by applying the formula for product Gaussian functions
[42, Eqn 7-9] we obtain,

Pi1,···,in =

 n∑
j=1

ωj(P
j
ij

)−1

−1

(48)

µ̄i1,···,in = (Pi1,···,in)
−1

n∑
j=1

ωj(P
j
ij

)−1µ̄jij (49)

αi1,···,in = K


n∏
j=1

(αjij )
ωj

√√√√√√
∣∣∣∣2π P jijωj

∣∣∣∣
|2πP jij |

wj

 . (50)

Hence,

vGMF ≈
∑

(i1,i2,...,in)∈[g1···n]

αi1,···,inN (s̄; µ̄i1,···,in , Pi1,···,in).

APPENDIX B

Proof of Theorem 1: Let L = I−A, then since A is doubly
stochastic L1̄n = 0̄n and LT 1̄n = 0̄n. Also, as the spectrum
of A is real and less than or equal to one in magnitude, the
spectrum of L is real and less than or equal to zero. Now, from
the above statement we conclude that L is a positive semi-
definite matrix. Furthermore, note that L can be interpreted
as the Laplacian of a weighted undirected graph GL having
the same topology of the graph associated with A except for
self loops. Since the connectivity properties of an undirected
graph does not depend on the existence of self loops, original
graph(graph associated with A) is connected if and only if GL
is connected. From [43, Proposition 1], we infer that GL is
connected if and only if L+ 1

n 1̄1̄> � 0. Therefore, substituting
L = I −A in the equation yields 1

n 1̄1̄> + I � A.

APPENDIX C

Proof of Lemma 1: According to Schur complement lemma
[44, Chapter 2], the following linear matrix inequality(LMI)

[44],
[
Q S
ST R

]
� 0 is equivalent to R � 0, Q−SR−1ST � 0.

Therefore, the LMI Eq 36 is equivalent to P̄ − ∆̄−1 � 0.
Also, it is straightforward to see that Trace(P̄ ) ≥ Tr(∆̄−1).
Since, ∆̄ is the block diagonal matrix containing the posterior
information matrices of all tracking robots, ∆̄−1 is a block
diagonal matrix with {P 1,α

gm , P
2,α
gm , · · · , Pn,αgm } along its diago-

nal. Therefore, 1
n×αTr(P̄ ) ≥ 1

n×αTr(∆̄
−1) is equivalent to

1
n×αTr(P̄ ) ≥ 1

n

∑n×α
i Tr(P i,αgm)
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