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Abstract—We address the problem of planning robot motions
in constrained configuration spaces where the constraints change
throughout the motion. The problem is formulated as a sequence
of intersecting manifolds, which the robot needs to traverse
in order to solve the task. We specify a class of sequential
motion planning problems that fulfill a particular property of
the change in the free configuration space when transitioning
between manifolds. For this problem class, the algorithm Se-
quential Manifold Planning (SMP™) is developed that searches
for optimal intersection points between manifolds by using RRT*
in an inner loop with a novel steering strategy. We provide a
theoretical analysis regarding SMP*s probabilistic completeness
and asymptotic optimality. Further, we evaluate its planning
performance on various multi-robot object transportation tasks.

I. INTRODUCTION

Sampling-based motion planning (SBMP) considers the
problem of finding a collision-free path from a start configu-
ration to a goal configuration. Algorithms like probabilistic
roadmaps [22] or rapidly exploring random trees are
able to plan such motions and provide theoretical guarantees
regarding probabilistic completeness. Optimal SBMP algo-
rithms like RRT* additionally minimize a cost function
and achieve asymptotic optimality. However, many tasks in
robotics have a more complex structure that requires incorpo-
rating additional objectives like subgoals or constraints into
the planning problem. SBMP methods are difficult to directly
apply to such types of problems because they require splitting
the overall task into multiple planning problems that fit into the
SBMP structure. Task and motion planning (TAMP) is a com-
mon way to address such more complex problems [19} 16, 49].
TAMP algorithms plan collision-free paths and also reason
about selecting and ordering actions to complete a higher-
level task, which makes them more difficult to solve than
SBMP problems. Here, we propose a problem formulation for
sequential motion planning where a problem is represented as
a sequence of manifolds, and we require that the robot traverse
this sequence in order to solve the overall task. State-of-the-art
trajectory optimization methods [38]] can handle task
descriptions via costs and constraints. However, they strongly
depend on the path initialization and suffer from poor local
optima for long-horizon tasks.

We propose the algorithm SMP* that solves motion plan-
ning problems for a given sequence of manifolds. The al-
gorithm searches for an optimal path that starts at an initial
configuration, traverses the manifold sequence, and converges
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Fig. 1: 3D Point on Geometric Constraints — The surfaces
visualize the level sets of the three constraints. The task is
to move from the start point (red dot) towards the goal point
(blue dot) while fulfilling the constraints. The line shows a
solution that fulfills these constraints and the magenta points
are the found intersection vertices.

when the final manifold is reached. We solve this problem by
growing a single tree over the manifold sequence. This tree
consists of multiple subtrees that originate at the intersections
between pairs of manifolds. We propose a novel steering
strategy for RRT* that guides the robot towards these manifold
intersections. After an intersection is reached, a new subtree is
initialized with the found intersection points and their costs.
This approach allows us to use dynamic programming over
optimal intersection points and scales well to long horizon
tasks since a new subtree is initialized for every manifold.
The algorithm is applicable to problems specified by a property
regarding how the free configuration space changes across sub-
tasks called intersection point independence (see Section [IV)).

A running example in this paper is the task of using a robot
arm to transport a mug from one table to another while keeping
the orientation of the mug upright. This task involves multiple
phases and constraints that we describe informally as follows.
First, the arm moves to pick up the mug. In this subtask,



the arm can move freely in space and only needs to avoid
collisions with obstacles. The second subtask is to grasp the
mug. The third subtask is for the arm to transfer the mug with
the goal keeping the mug upright at all times. The final subtask
is to place and release the mug. This requires the base of the
mug to be near the table for the gripper to successfully release
the mug. We demonstrate our method in Section [V on similar
tasks that involve multiple robots.

The main contributions of this work are a novel problem
formulation for sequential motion planning on manifolds (Sec-
tion V), an algorithm to solve such problems for a certain
class of planning problems (Section [V), and proofs of proba-
blistic completeness (Section and asymptotic optimality
(Section of the proposed algorithm. In Section [VI, we
demonstrate the performance of SMP* on sequential kinematic
planning problems and compare it to alternative planning
strategies.

II. RELATED WORK
A. Sampling-Based Motion Planning

Sampling-based motion planning (SBMP) is a randomized
approach to path planning that builds a tree or graph in the
robot configuration space. A PRM (probabilistic roadmap) is a
path planner that builds a graph in the free configuration space
that can be used for multiple queries [2| 22| [35]. Kavraki et
al. [22] describe the method as a two-step procedure. First, a
roadmap is built by sampling collision-free nodes and edges.
Second, a path is found from a start to a goal state by using
a graph search algorithm. This technique is multi-query, as
it does not necessarily encode a specific start or end state,
and thus can be reused for many planning problems with the
same system. On the other hand, tree methods such as RRTs
(rapidly-exploring random trees) are generally single-query,
taking a specific start state from which a tree of feasible states
is grown toward a goal state or region [31]. An advantage
is that they can directly encode and respect kinodynamic and
nonholonomic constraints. Many extensions to RRT exist, such
as bidirectional trees and goal biasing [30l [32]]. There also
exist optimal variants RRT* and PRM*, which find paths that
minimize a cost function and guarantee asymptotic optimality
by using a rewiring procedure [21]. All these techniques
consider the problem of planning without motion constraints;
that is, they plan in the free configuration space.

Here, we use a modified version of RRT* in the inner loop
of our algorithm that can handle goals defined in terms of
equality constraints instead of a goal configuration. Restricting
the problem class to intersection point independent problems
(see Section [IV-B) allows us to grow a single tree over a
sequence of manifolds on which rewiring operations can still
be performed. We show in Section [VII] and [VIII] that our algo-
rithm inherits the probabilistic completeness and asymptotic
optimality guarantees of RRT*.

B. Constrained Sampling-Based Motion Planning

Planning with constraints is an important problem in
robotics since it allows for the description of a wider range of
tasks compared to the classical SBMP problem. An in-depth

review of constrained SBMP can be found in Kingston et al.
[25]]. Constrained SBMP algorithms [45} |5, [17, 23 26, 46, [11]
extend SBMP to constrained configuration spaces, which are
of smaller dimension than the full configuration space and
usually cannot be sampled directly. An important aspect of
these methods is how to generate samples and steer the robot
while fulfilling the constraints.

One family of approaches are projection-based strategies
[5, 145 146 that first sample a configuration from the ambient
configuration space and then project it using an iterative gradi-
ent descent strategy to a nearby configuration that satisfies the
constraint. Kaiser et al. [20] considered the problem of finding
a robot configuration that satisfies multiple constraints. They
propose a solution where one constraint is set as the primary
constraint on which a configuration is projected. Afterwards,
the configuration is projected on remaining constraints while
fulfilling the primary constraint. Berenson et al. [5] proposed
the algorithm CBiRRT (constrained bidirectional RRT) that
uses projections to find configurations that fulfill constraints.
The constraints are described by task space regions, which are
a representation of pose constraints. Their method can also be
used for multiple constraints over a single path. However, their
approach requires each constraint’s active domain to be defined
prior to planning, or configurations are simply projected to
the nearest manifold rather than respecting a sequential order.
Our approach is perhaps closest to the CBiRRT algorithm. A
main difference is that our method assumes a different problem
formulation where the task is given in terms of a sequence of
manifolds where the intersections between manifolds describe
subgoals that the robot should reach. This problem formulation
allows us to define a more structured steering strategy that
guides the robot towards the next subgoals. Another difference
is that CBiRRT does not search for optimal paths while we
employ RRT* to minimize the lengths of the path. We compare
our method SMP* to CBiRRT in the experimental section of
this paper.

An alternative sampling strategy is to approximate the
constraint surface by a set of local models and use this
approximation throughout the planning problem for sampling
or steering operations [17, [18} 123} 147, 145, 9]. AtlasRRT [18]]
builds an approximation of the constraint that consists of
local charts defined in the tangent space of the manifold.
This representation is used to generate samples that are close
to the constraint. Similarly, Tangent Bundle RRT [23| |47]]
builds a bidirectional RRT by sampling a point on a tangent
plane, extending this point to produce a new point, and if it
exceeds a certain distance threshold from the center of the
plane, projecting it on the manifold to create a new tangent
plane. Bordalba et al. [9]] addressed the problem of constrained
kinodynamic planning by considering the fact that simulating
ODEs will produce drift errors. They also propose an atlas-
based method to address this problem by incorporating the
creation of an atlas as the state space parameterization into
the construction of a bidirectional RRT.

Kingston et al. [26] presented the implicit manifold config-
uration space (IMACS) framework that decouples two parts of
a geometrically constrained motion planning problem: the mo-
tion planning algorithm and the method for constraint adher-



ence. With this approach, IMACS acts as a representative layer
between the configuration space and the planner that presents
the constrained space to the planner. Many of the previously
described techniques fit into this framework. They present
examples with both projection-based and approximation-based
methods for constraint adherence in combination with various
motion planning algorithms.

In this work, we propose a method that builds on these con-
strained SBMP methods and extends them towards sequential
tasks where the active constraints change during the motion.

C. Sequential Motion Planning

One approach to plan sequential motions is task and motion
planning (TAMP), which requires semantic reasoning on se-
lecting and ordering actions to complete a higher-level task
(19, 12 29 149 [13} 3, 110, 27, 36]. In general, TAMP is
more difficult to solve due to scalability issues and the more
complicated problem definition compared to SBMP. In our
problem formulation, we assume that the sequence of tasks
is given and focus on optimizing over the transition points
between two constraints. Though we do not address task
planning in this work, it is an interesting future direction we
plan to consider.

Hauser and Ng-Thow-Hing [16] proposed the multi-modal
motion planning algorithm Random-MMP, which plan motions
over multiple mode switches that describe changes in the plan-
ning domain (e.g., contacts). Their planner builds a tree in a
hybrid state that consists of the continuous robot configuration
and a discrete mode. In each step of the algorithm, the tree is
extended by randomly sampling mode switches and querying
a SBMP to find a corresponding path. Informed expansion
strategies like utility tables are used to incorporate prior
knowledge of a task in order to improve the performance of the
planner. Vega et al. [S0] presented the Orbital Bellman trees
(OBT) algorithm, which addresses the manipulation planning
problem in a similar way. They introduce the notion of an
orbit, which is the set of reachable configurations of a mode,
and assume that they can sample configurations in an orbit as
well as on its boundary. This functionality is used to generate
random geometric graphs of configurations belonging to an
orbit. During planning, such graphs are built for unexplored or-
bits and A* is performed to connect the points of an orbit to its
neighboring orbits. The paper also contains a factored variant
that uses domain knowledge to reduce the number of graphs
that need to be grown. Kingston ef al. [27] proposed a similar
multi-modal motion planning method. Instead of choosing
random transitions between modes as in [[16], they choose the
transitions based on an informed search and the likelihood of
a transition being successful, which is estimated online during
the planning. Manipulation graphs are a similar framework
to plan sequential manipulation tasks for robots [42]. The
framework consists of graphs representing the continuous
space of all feasible motions that the robot can perform, which
are categorized into transit and transfer modes. A reduction
property is defined that allows the graph to be represented by
separate components that occur at the intersection of the two
modes. Visibility-based PRMs [41] are used to represent the

graphs and capture the closed-chain systems. Mirabel et al.
[34] presented an algorithmic implementation of manipulation
graphs for object manipulations where the constraints are also
defined as level sets of equality constraints. They also present
a graph builder that builds the constraint graph automatically.
Schmitt et al. [39] extended this framework to also handle
robot dynamics and time-variant environments.

Our work is similar to these approaches in that we also
consider planning over multiple manifolds where changes in
the configuration space occur due to picking or placing objects.
In contrast to prior approaches, we do not assume that direct
sampling of modes or switches is possible; rather, our algo-
rithm is designed to find the mode-switching configurations
during exploration toward manifold intersections. Further, we
differ by specifying our problem formulation over a sequence
of given manifolds and by applying this in the domain of
intersection point independent problems, which we specify
for sequential planning problems, and which are efficiently
solvable by growing a single tree.

Trajectory optimization [S1} 40, |48} 138, [7]] is another ap-
proach to solve sequential motion planning problems. There,
an optimization problem over a trajectory is defined that min-
imizes costs subject to constraints. This formulation is similar
to our problem formulation in Equation (I) and allows us to
describe complex behavior. However, trajectory optimization
suffers from poor local minima and the need to specify costs
and constraints activity for concrete time points. In complex
tasks, it is difficult to specify how long a specific part of
a motion takes in advance. Our approach only requires the
sequential order of tasks and does not make any assumption
of specific time points or durations of subtasks.

III. PRELIMINARIES

We begin with a brief background on differential geometry
(see Boothby [8] for a rigorous treatment). An important
idea in differential geometry is the concept of a manifold.
A manifold is a surface which can be well-approximated
locally using an open set of a Euclidean space. In general,
manifolds are represented using a collection of local regions
called charts and a continuous map associated with each chart
such that the charts can be continuously deformed to an open
subset of a Euclidean space. An alternate representation of
manifolds, which is useful from a computational perspective,
is to express them as zero level sets of functions defined on a
Euclidean space. Such a representation of a manifold is called
an implicit representation of the manifold. For example, a
unit sphere embedded in R? can be represented implicitly as
{z € R?® | ||z|]| — 1 = 0}. An implicit manifold is said to be
smooth if the implicit function associated with it is smooth.
The set of all tangent vectors at a point on a manifold is a
vector space called the tangent space of the manifold at that
point. The null space of the Jacobian of the implicit function at
a point is isomorphic to the tangent space of the corresponding
manifold at that point. Since the tangent spaces of a manifold
are vector spaces, we can equip them with an inner product
structure which enables the computation of the length of
curves traced on the manifold. A manifold endowed with an



inner product structure is called a Riemannian manifold [33]].
In this paper, we only consider smooth Riemannian manifolds.

IV. PROBLEM FORMULATION AND APPLICATION DOMAIN

We consider kinematic motion planning problems in a
configuration space C' C R¥. A configuration ¢ € C' describes
the state of one or multiple robots with £ degrees of freedom
in total. We represent a manifold M as an equality constraint
har(q) = 0 where

har(q) : R¥ = RE.

The set of robot configurations that are on a manifold M is
given by
CMZ{QEC|hM(q)=O} .

We define a projection operator
Qproj = PrOjeCt(Qa M)

that takes a robot configuration ¢ € C and a manifold M as
inputs and maps ¢ to a nearby configuration on the manifold
Goroj € C'ps. We use an iterative optimization method, similar
to [26, 15} 144], that iterates

dn+1 = 4n — J]M<Qn)+hM(Qn)

until a fixed point on the manifold is reached, which is checked
by the condition ||As(gproj)|| < €. The matrix Jys(g)™ is the
pseudo-inverse of the constraint Jacobian

Ju(q) = ghM(Q) .

9q
We are interested in solving tasks that are defined by a
sequence of n + 1 such manifolds

M - {Ml,MQ, . .,Mn+1}

and an initial configuration gyax € Cy, that is on the first
manifold. The goal is to find a path from gy, that traverses
the manifold sequence M and reaches a configuration on the
goal manifold M, ;. A path on the i-th manifold is defined
as

70 [0,1] = Chy,

and J(7;) is a cost function of a path
J:T — RZO

where 7 is the set of all non-trivial paths. We assume access
to a collision check routine

CollisionFree : Cp x Cpyr — {0,1}

that returns 1 if the path between two configurations on
the manifold is collision-free, 0 otherwise. In the following
problem formulation, we consider the scenario where the free
configuration space Cp. changes during the task (e.g., when
picking or placing objects). We define an operator Y on
the free configuration space Cpee, Which describes how Clee
changes as manifold intersections are traversed. Y takes as
input the path 7,_; on the previous manifold M;_; and its

associated Clye, Which we denote as Clyee,;—1. T outputs an
updated free configuration space

Cfree,i = T(Cfree,ifla 7—7:71)

that accounts for the geometric changes due to transitioning
to a new manifold.

Returning to our illustrative example, we can now describe
one of its constraints more precisely. A simple grasp constraint
can be described with har(q) = g — fpos,e(q) Where fpos ¢ is
the forward kinematics function of the robot end effector point
e and w, is the grasp location on the mug. This constraint
can be fulfilled for multiple robot configurations ¢, which
correspond to different hand orientations that will affect the
free configuration space for the subsequent tasks. For example,
if a mug was grasped from the side, it will have a different
free space during the transport phase than if it was grasped
from the top.

A. Problem Formulation

We formulate an optimization problem over a set of paths
T =(n,...,T,) that minimizes the sum of path costs under
the constraints of traversing M and of being collision-free.
The sequential manifold planning problem is

n
T = argmin Z J(7i)
T i=1
S.t. T1 (0) = (start

7i(1) = 7341(0) Vi1, n—1 (D
Cfree,i-i—l = T(Cfree,ia Ti) vi:l,“.,n
7i(8) € Chs, N Chree i Vi=1,...n Vse[0,1]

Tn(l) € CJV[n+1 N C’frf:e,nqu

The second constraint ensures continuity such that the end-
point of a path 7;(1) is the start point of the next path 7;41(0).
The third constraint captures the change in the collision-free
space defined by the operator Y. The last two constraints
ensure that the path is collision free and on the corresponding
manifolds. The endpoint of 7,, must be on the goal manifold
M, +1, which denotes the successful completion of the task.

An advantage of this formulation is that it is not necessary
to specify a target configuration in C. A wider range of
goals (e.g., in the robot end effector space) can be described
in the form of manifolds. Another advantage is that it is
possible to describe complex sequential tasks in a single
planning problem, not requiring the specification of subgoal
configurations. The algorithm that is proposed in Section
searches for a path that solves this optimization problem for
the problem class described in the next section.

B. Intersection Point Independent Problems

We now use the problem formulation in (I}) to describe
robotic manipulation planning problems in which the man-
ifolds describe subtasks that the robot needs to complete
(e.g., picking up objects). The solution is an end-to-end path
across multiple task constraints. In manipulation tasks, it is
common that the geometry changes throughout the motion
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Fig. 2: Initialization of a new subtree (steps of Algorithm . The reached goal nodes at the intersection M N Mo are
used to initialize the next tree where o iS a synthetic root node that ensures the tree structure.

due to picking up or placing objects. Here, we make the
assumption that these changes only occur at the transition
between two manifolds. For example, changing the grasp of
a mug will only occur at points during the task when it is
picked up or placed.

For a certain class of sequential manifold planning prob-
lems, the following property holds: For each manifold intersec-
tion M; N M; 1, the free space output by T is set-equivalent
for every possible path 7;. In other words, the precise action
taken to move the configuration from one constraint to the next
does not affect the feasible planning space for the subsequent
subtask. When this property holds for all intersections, we call
the problem intersection point independent. The condition for
this class of problems is

Vi € [0,n) V7,7, € T : 7(1),7'(1) € Cpr, N Cyg

i+1 2
= T(Cfree,i,T) = T(Cfree,ivT/) @)

where = denotes set-equivalence. In this work, we focus on the
intersection point independent class of motion planning prob-
lems, which encompass a wide range of common problems.
For grasping constraints, a notion of object symmetry about
the grasp locations results in intersection point independent
problems. If the object to be grasped is a cylindrical can, for
example, allowing grasps to occur at any point around the
circumference but at a fixed height would be intersection point
independent. Any two grasps with the same relative orientation
of the gripper result in the same free configuration space of the
system (robot + can). However, suppose the grasps can occur
at any height on the can. Now, a grasp near the top of the can
and a grasp in the middle of the can result in different free
configuration spaces, and thus this would be an intersection
point dependent problem.

Focusing on intersection point independent problems allows
us to define an efficient algorithm that grows a single tree over
a sequence of manifolds. The more general intersection point
dependent problems covers a wider descriptions of problems.
However, they are more difficult to solve because they require
the handling of foliated manifolds [24] (e.g., every grasp leads
to a different manifold). Our illustrative example is one such
problem, since the grasp on the handle and the grasp from
the top of the mug result in different free spaces. We plan
to address this more complex problem class in future work
and provide some insights in Section how the proposed
algorithm could be used to tackle them.

V. SEQUENTIAL MANIFOLD PLANNING

In this section, we present the algorithm SMP* that
solves the problem formulated in Equation (T)). The algorithm
searches for an optimal solution to the constrained optimiza-
tion problem, which is a sequence of paths 7 = (7q,...,7,)
where each 7; is a collision-free path on the corresponding
manifold M;. The steps of SMP* are outlined in Algorithm [T}
The input to the algorithm is a sequence of manifolds M and
an initial configuration gsa € M7 on the first manifold.

The overall problem is divided into n subproblems. In each
subproblem, a tree is grown from a set of initial nodes towards
the intersection of the current and next manifold M; N M, ;.
In the inner loop of the algorithm (lines BH24), the steps are
similar to RRT* and the rewiring step in the RRT*_EXTEND
routine (Algorithm [2)) is equivalent to the one in RRT* [21]].
The extend operation uses a distance function ¢(qo, 1) € R>o
between two nearby configurations and a function Cost(q)
that stores the path costs from the root of the tree to a node
g. The main modifications with respect to RRT* are in the
extension and projection steps. Instead of targeting a single
goal configuration as done in general SBMP, we propose two
novel steering strategies that steer towards the intersection
between manifolds M; N M;y;.

In steps PHI2] a new target point gyng in the configuration
space is sampled and its nearest neighbor ¢, in the tree is
computed. Next, one of the following two steering strategies
is selected to find a direction d in which to extend the tree.

1) SteerPoint(qg, g1, M;) extends the tree from gy € Cyy,
towards ¢; € C while staying on the current manifold
M;.

2) SteerConstraint(qy, M;, M; 1) extends the tree from
go € C)y, towards the intersection of the current and
next manifold M; N M.

Both steering steps are described in detail in Section [V-A] and
Similar to the goal bias in RRT, a parameter 3 € [0, 1]
specifies the probability of selecting the SteerConstraint step.
Then, a new point gpey is computed by taking a step in direc-
tion d from gpe,r With the maximum step size o € R~ . Before
the point is added to the tree, it is projected onto a manifold
(steps [I3HI7). Depending on the distance to the intersection
of the manifolds, which is measured with |[|has,., (Gnew)||s
the point is projected either on the manifold M; or on the
intersection manifold M; N M;;;. The threshold for this
condition is sampled uniformly between O and 7., Where
the parameter rm,x € Rs( describes the closeness required by
a point around M, to be projected onto M; N M; . This



randomization is necessary in order to achieve probabilistic
completeness that is shown in Section which also gives
a formal definition of rp,. Afterward, the RRT*_EXTEND
routine described in Algorithm 2] is called with the projected
Gnew point. This routine checks the point for collision with
the current free configuration space Clyee i, performs rewiring
steps, and eventually adds the point to the tree. The point is
also added to a set of goal nodes Vj, if it is on the intersection
manifold M; N M; . In order to avoid duplicate intersection
nodes, we ensure a minimum distance p € R+, between two
nodes in Vioa (step . After each time the inner loop of
SMP* is completed, a new tree is initialized in steps
with all the intersection nodes in Vyo, and their costs so far. In
order to keep the tree structure, we add a synthetic root node
Groot @s parent node for all intersection nodes (see Figure E])
Convergence of the algorithm can be defined in various ways.
We typically set an upper limit to the number of intersection
nodes or provide a time limit for the inner loop. After reaching
the last manifold, the algorithm returns the path with the lowest
cost that reached the goal manifold M,, .

In the following sections, the steering strategies SteerPoint
and SteerConstraint are derived.

A. SteerPoint(qo, q1, M;)

In this extension step, the robot is at ¢g € C)y, and should
step towards the target configuration ¢; € C' while staying on
the manifold M;. We formulate this problem as a constrained

optimization problem of finding a curve v : [0,1] — C that
minimize ||y(1) — q1]|?
Bt
subject to v(0) = qo
1 (3)
| 1@l ds <a
0
har, (v(s)) =0 Vs e0,1]

This problem is hard to solve due to the nonlinear constraints.
Since the steering operations are called many times in the inner
loop of the algorithm, we choose a simple curve representation
and only compute an approximate solution to this problem. We
parameterize the curve as a straight line with length «.

d
v(s) =qo0 + sozw “4)

Further, we apply a first-order Taylor expansion of the mani-
fold constraint Ay, (qo+d) =~ h(qo)+Jar, (qo)d . The problem
is reduced to finding a direction d that

1
L d — . 2
mlnl;anC B I (g1 — qo)||

&)
subject to  Jpz, (qo)d =0
which has the optimal solution
d= (I = I3, (Iar; Iag) ™ Ia) (@1 — o) ©

= VLVf(fh - (Zo)

where V| contains the singular vectors that span the right
nullspace of Jyy, [37]. We normalize d later in the algorithm,
and thus do not include the constraint ||d|| < « in the reduced

Algorithm 1 SMP* (M, gyart, @, €, 0, Tmax )

V= {qman}; E = 0

2: for i=1 to n do

3 vaoal =0

4 while TimeRemaining() do

5: (rand < Sample(C)

6 Gnear < NeaIeSt(Via Qrand)

7 if 4(0,1) < S then

8 d < SteerConstraint(gnear, My, M;y1)

9: else

10: d + SteerPoint(gnear, Grand, M;)

11: end if

12: Gnew < Gnear + O‘ﬁ(d]il‘

13: if |[har, ) (Gnew)|| < U(0,7max) then

14: Gnew < Project(qnew, M; N M; 1)

15: else

16: Gnew < Project(gnew, M;)

17: end if

18: if RRT*_EXTEND(V;, E;, gnear; ¢new) then
19: if ||har, ) (Gnew)|| < € and
20: ||Nearest(Vioal, Ghew) — Gnew|| > p then
21: ‘/goal < V:goal U Gnew
22: end if
23: end if
24: end while
25: // return path with lowest costs when M, is reached
26: if i = n then
27: return OptimalPath(Vi.,., E1.n, Gstart, Mit1)
28: end if
29: // initialize next tree with the intersection nodes

30: Qroot = null, ‘/iJrl = {Qrool}§ Ei+1 =
31: for g € Vi do

32: Vigr < Vipr U{a}; Eir < Eip1 U {(groot, 0) }
33: end for
34: end for

optimization problem. The new configuration gg + aﬁ will
be on the tangent space of the manifold at configuration gy,
so that only few projection steps will be necessary before it
can be added to the tree.

B. SteerConstraint(qo, M;, M; 1)

This steering step extends the tree from gg € C)y, towards
the intersection of the current and next manifold M; N M, 1,
which can be expressed as the optimization problem

1Az, (YD)

subject to  y(0) = qo
1
|

/O K]l ds < a
hMi(’y(s)) =0 Vse [0, ].]

The difference from problem (3)) is that the loss is now speci-
fied in terms of the distance to the next manifold fy, ., (v(1)).
This cost pulls the robot towards the manifold intersection.
Again, we approximate the curve with a line (Equation (@)

minimize
¥

)



Algorithm 2 RRT*_EXTEND (V, E, guear, new )
1: if CollisionFree(gnear; qnew) then

1/k
Qnear = Near(‘/v Gnew 5 min {'YRRT* (%) 7a})

2:

3: V+Vu {qnew}

4: Gmin = Qnears Cmin = COSt(Qneax) + C(Qneara Qnew)

5 for qne.r € Qnear do

6: if CollisionFree(gnear, Gnew) and

7: COSt(Qnear) + C(Qneara Qnew) < Cmin then

8: Gmin = Qnear> Cmin = COSt(Qnear) + C(QHear; qnew)
9: end if

10:  end for

—_

E+~FEU {(Qmina Qnew)}
12: for gnear € Qnear do

13: if CollisionFree(gnew, gnear) and

14: Cost(gnew) + ¢(Gnew Gnear) < COSt(gnear) then
15: (parent = Parent(Qnear)

16: E<+ FE \ {(Qparenta Qnear)}

17: E+ EU {(QneW7 Qnear)}

18: end if

19:  end for

20:  return True
21: else

22:  return False
23: end if

and apply a first-order Taylor expansion to the nonlinear terms,
which results in the simplified problem

. 1
mlnl;nlze §||h]\/fi+1<q0)+JM¢+1(qo)dH2 (8)

subject to  Jpz,(go)d =0 .

A solution d can be obtained by solving the linear system

JJ—\r4,;+1JMi+1 JJ—C]H—l (d): —JA—ZthMiH )
I, 0 A 0

where \ are the Lagrange variables. The solution is in the
same direction as the steepest descent direction of the loss
projected onto the tangent space of the current manifold.

A reference implementation of this algorithm in Python is
made available on GitHub

VI. EVALUATION

In the following experiments, we solve kinematic motion
planning problems where the cost function measures path
length. We compare the proposed method SMP* (Algorithm [T])
with three alternative methods:

e Greedy SMP* — Algorithm [I] with the modification that
only the node with the lowest cost in Vi, is selected to
initialize the next tree (steps [30] — [33] of Algorithm [T).

o RRT*+IK - This is a two-step procedure. First, a point
on the manifold intersection is generated via inverse
kinematics by randomly sampling a point in C' and
projecting it onto the manifold intersection. Next, RRT*

Uhttps://github.com/etpr/sequential-manifold-planning

is applied to compute a path towards this node. This
procedure is repeated until the goal manifold is reached.

e CBiRRT - The Constrained Bidirectional Rapidly-
Exploring Random Tree algorithm [4, 5] grows two
trees towards each other with the RRT Connect strategy
[30]. In each steering step, the sampled configuration
is projected onto the manifold with the lowest level set
function value.

We executed all methods with the same upper time limit and
compared the quality of found paths in terms of the given
objective.

A. 3D Point on Geometric Constraints

We demonstrate the performance of the proposed algo-
rithm on a 3D point that needs to traverse three constraints
defined by geometric primitives. The initial robot state is
st = (3.5,3.5,4.45) and the sequence of manifolds is

1) Paraboloid:
Mi(q) =0.1¢7 +0.1¢3 +2 — g3
2) Cylinder:
har, (q) = 0.25¢7 4 0.25¢5 — 1.0
3) Paraboloid:
has (¢) = =0.1¢F — 0.1¢3 — 2 — g3

4) Goal point:
hM4 (Q) = q — {goal

with the goal configuration ggoq = (—3.5, —3.5, —4.45).
We evaluate the algorithms on two variants of this problem. An
obstacle-free variant (visualized in Figure (1)) and a variant that
contains four box obstacles placed at the intersections between
the manifolds (visualized in Figure [3). The configuration
space is limited to [—6,6] in all three dimensions and the
time limit for growing a tree is 10s for all methods. Note
that CBiRRT does not optimize an objective function and
immediately converges when it finds a feasible path, which
achieves an overall lower computation time. In this experi-
ment, the computation time of CBiRRT was 2.454+0.44 s. The
parameters of the algorithms are o = 1.5, 5 = 0.05, e = 0.01,
p=0.1, and rmx = 1.5. In Figure (I} ggar is drawn as red
point and ¢goa as blue point. The intersection nodes Vioq
are shown as magenta points and a solution path from SMP*
is visualized as a line. Figure [3] shows a set of found paths
on the variant with obstacles. Only SMP* is able to find the
optimal intersection regions between the obstacles. The path
costs of the four algorithms are summarized in the table in
Figure [4] The results show that SMP* finds the path with
the lowest cost. CBiRRT and RRT*+IK do not optimize over
the intersection points, which explains the higher costs and
standard deviations. Greedy SMP* always selects the best
intersection point, which improves the path costs compared
to CBiRRT and RRT*+IK. However, these greedily selected
intersection points are not necessarily the best choice for the
global path. SMP* searches over the intersection points in a
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Fig. 3: Samples of found paths on the geometric constraints

w/ obstacles problem (Section [VI-A).

Start

Goal
I SMP*
I Greedy SMP*
I CBiRRT
I RRT*+IK

w/o obstacles | w/ obstacles

SMP* 14.36 £ 0.02 | 15.54 +0.09
Greedy SMP* 16.15 £ 0.03 | 21.31 £0.70
CBiRRT 17.04 +2.65 | 20.29 + 3.04
RRT*+IK 17.56 +2.33 | 20.89 +4.51

J(7)

'\n/

——SMp*
—=— Greedy SMP*
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p
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20
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15 A —=— CBiRRT
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Fig. 4: Path costs of the 3D point on geometric constraints ex-
periment. We report the mean and one unit standard deviation
over 50 runs.

more profound manner and selects the optimal sequence of
explored intersection points for the final path.

In Figure the path costs J(7) of SMP* and Greedy
SMP* are compared for various values of the parameter p.
This parameter specifies the minimum distance between two
intersection points, which influences the number of intersec-
tion points created during planning (step 20] in Algorithm [I)).
The results show that the found paths of SMP* with a lower
p lead to lower costs. For larger p, the performance of SMP*
converges to the same performance as Greedy SMP* since
only a single intersection point is considered.

Figure [5b] visualizes the cost over the phase of the path
where s € [0, 1] parameterizes the path on the first manifold
My, s € [1,2] on My and s € [2,3] on Mjs. The results
indicate that the Greedy SMP* strategy finds paths that reach
the intersections of M7 N Ms and Mo N M3 with lower costs.
However, SMP* finds the path that achieves the overall task
of reaching the goal manifold A, with the lowest mean cost
and standard deviation where it outperforms RRT*+IK and
CBiRRT.

B. Multi-Robot Object Transport Tasks

In this experiment, we demonstrate SMP* on various object
transportation tasks. The overall task objective is to transport
an object from an initial to a goal location. We consider three
variations of this task:

(®)

Fig. 5: Path costs over variations of the parameter p (left)
and over the phase of the motion s (right) on the geometric
constraints w/o obstacles problem (Section [VI-A). The graphs
show the mean and unit standard deviation over 50 trials. In
(a), the costs are increasing for higher values of p. For larger
values, the performance of SMP* is very similar to the Greedy
SMP* strategy. In (b), Greedy SMP* finds shorter paths to the
first two manifold intersections while the overall best solutions
towards the target manifold is found by SMP*.

o Task A: A single robot arm mounted on a table with
k = 6 degrees of freedom. The task is to transport an
object from an initial location on the table to a target
location. This task is described by n = 3 manifolds.

o Task B: This task consists of two robot arms and a mobile
base consisting of k£ = 14 degrees of freedom. The task
is defined such that the first robot arm picks the object
and places it on the mobile base. Then, the mobile base
brings it to the second robot arm that picks it up and
places it on the table. This procedure is described with
n = 5 manifolds.

o Task C: In this task, four robots are used that need to
transport two objects between two tables. Three arms
are mounted on the tables and another arm with a tray
is mounted on a mobile base. Besides transporting the
objects, the orientation of the two objects needs to be kept
upright during the whole motion. This task is described
with n = 12 manifolds and the configuration space has
k = 26 degrees of freedom.

The three tasks are visualized in Figure [6] where the target
locations are shown as green areas. The geometries of the
objects were chosen such that the tasks fall into the intersection



(a) Task A (b) Task B

(c) Task C

Fig. 6: Object transport tasks where the goal is to transport the red and blue object to the green target locations.

Fig. 7: Snapshots of the resulting motion that SMP* found for Task C.

Task A Task B Task C
SMP* 7.94+0.69 | 13.58 +£1.14 | 27.07 &+ 2.58
RRT*+IK 9.46 £ 1.65 — -
Greedy SMP* | 8.56 +1.24 | 14.22 +1.71 | 31.75 + 2.51

Fig. 8: Results of object transport experiment. We report the
mean and one unit standard deviation over 10 runs.

point independent category (see Section [[V-B). Three types of
constraints are used to describe these tasks. Picking up an
object is defined with the constraint hns(q) = g — fpos,e(q)
where z, € R3 is the location of the object and fpos,e(@)
is the forward kinematics function to a point e € R? on
the robot end effector. The handover of an object between
two robots is described by har(q) = foos,er (@) — fpos,es (@)
where fpos.e, (¢) is the forward kinematics function to the end
effector of the first robot and fpes.c, (¢) is that of the second
robot. The orientation constraint is given by an alignment
constraint hpr(q) = fror2(q)Te. — 1 where fior.(q) is a
unit vector attached to the robot end effector that should
be aligned with the vector e, = (0,0,1) to point upwards.
These constraints are sufficient to describe the multi-robot
transportation tasks. The parameters of the algorithms are
a=0.5 =02, e=1le—5, p=0.1, and rp,x = 0.5. The
time limit for all strategies is 60 s.

The costs of the SMP*, Greedy SMP* and RRT*+IK
algorithms are reported in Figure 8] SMP* outperforms the
other algorithms on all tasks. The RRT*+IK strategy was not
able to solve Tasks B or C. A found solution of SMP* for

Task C is visualized in Figure [/| The resulting motions of all
tasks are also shown in a supplementary videdﬂ

VII. PROBABILISTIC COMPLETENESS

In this section, we prove the probabilistic completeness of
our algorithm. Note that for ease of analysis, the analysis
presented in this section and in the subsequent section assumes
that p = 0 in In the future, we will analyze
the properties of our approach when p is strictly positive.
Moreover, in this analysis we refer to the collision free region
of a manifold when we allude to M;.

Definition 1: A collision-free path is said to have strong -
clearance if the path lies entirely inside the é-interior of UM,
where UM £ U M.

We start by assuming that there exists a path 7T with
strong 0-clearance connecting the goal manifold M,,; with
the start configuration ¢y, embedded on the sequence of
manifolds under consideration. Let L be the total length of
the path, computed based on the pullback metric [33] of the
manifolds due to their embedding in R*. Let & > 0 be the
minimum over the reach of all manifolds in the sequence
and the manifolds resulting from the pairwise intersection of
adjacent manifolds in the sequence. Informally, the reach of
a manifold is the size of an envelope around the manifold
such that any point within the envelope and the manifold
has an unique projection onto the manifold. For the analysis
presented here, we pick the steering parameter « such that

Zhttps://www.youtube.com/watch?v=GVhvE8cDgqvA
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& > a. We use the notation Tube(M;,£) to denote the set
{z € R* | d(x, M;) < £}, where

d(z, M;) = inf{||lz — y|lrr| y € M;} (10)

is the minimum distance of the point x to the manifold. Now,
if we define

G = lhar (@)1, (11

sup
qETube(M; &)

then for the sake of analysis we assume that 7,,x =
max {1, ,Cut1}. If v = min (4, ), then we define a

sequence of points

{[Qé = qslart;qi»"' 7q71n1] [CI(QNCI%’ 7(13,12]7"' )
iqalaq’fv"' 7q211] [q3+1i} (12)

on 7, such that [g¢,¢i, - ,q},.] € M; and 37 m; = m,
where m = #ﬁ;l) is the total number of points in the path.
Without loss of generality, we assume that for every M; with
1 < < n+1 there exists a non-negative integer j < m; such
that Qanlv o 7q] € M;_1 N M; and q7+17qj+2,”' aqml €
M; \ M;41. In other words, there exist some points at the
beginning of [gf. q,- - - ,q},, ] that belong to M;_; N M; and
the rest of the points on the manifold belong exclusively to
M;. For ease of analysis, the sequence of points on 7 is chosen
such that

las — @b llag, < g — @i llre < v/5, (13)

where || - ||as, and || - ||g+ are the distances between the points
according to the metrics on the manifold and ambient space
respectively We use B (qj, v) C R” to denote a ball of radius
v around ¢; under the standard Euclidean norm on RE. We
denote the tree that is grown with RRT* as 7T

We prove the probabilistic completeness of our strategy in
two parts. The first part proves the probabilistic completeness
of RRT* on a single manifold. In the second part, we prove
that with probability one, the tree 7" grown on a manifold
can be expanded onto the next manifold as the number of
samples tends to infinity. For the first part, as suggested in
[26, Section 5.3], the Lemma 1 in [28] can be shown to hold
for the single manifold case and probabilistic completeness
of RRT/RRT* on a manifold can be easily proven using [28}
Theorem 1]. We now focus on proving the second part that
shows the probabilistic completeness of our strategy. We start
by proving which enables us to prove that a tree
grown with RRT* on a manifold can be extended to the next
manifold.

Lemma 1: Suppose that T has reached M; and contains
a vertex (j;n such that ¢i, € B(q.,,,v/5). If a random
sample g’t} is drawn such that qr’;; € B(gitt,v/5), then
the straight path between PrOJect(qrdnd,M N MH_l) and the
nearest neighbor gpe,r of qr;gdl in T lies entirely in Cfree it1-
Proof: By definition ||grear — giarg || < [0, —qrz;q;H then
using the triangle inequality and some algebraic manipulation
similar to that used in the proof of [28, Lemma 1], we can
show that

z+1||

||q:n1 - qf’n, H + 2||x10+1 qrand

+2llg, — a5*l

i
qmi H

| | Qnear —

(14)

which leads 10 ||gnear — ¢y, | < 5% < v and gnear € B(gl,,, V).

Again, by the triangle inequality, we can show that
|| Gnear — qﬁ;; | < wv. As the sample qmnd is taken from Within

the reach of M, there exists a unique nearest pomt of qmnd on
M; [ In other words, the operation Project(q’t{, M;NM;.1)
is well-defined. Therefore, as

7+1

l|near — Project(qgungs Mi O Mit1)|| < | gnear — qrand” s,

15)

the straight path between Project(qf;;;, M; N M;41) and gnear
lies entirely in Clee,it1- [ |

Note that the above lemma is an extension of [28, Lemma
1]. The next theorem will prove that with probability one
SMP* will yield a path as the number of samples goes to
infinity. Since we are only concerned about the transition of
T from one manifold to the next, we focus on the iterations
in SMP* after T' reaches a neighborhood of qu € M;. We
refer to such an iteration as a boundary iteration.

Theorem 1: The probability that SMP* fails to reach the
final manifold M, 4+, from an initial configuration after ¢
boundary iterations is bounded from above by aexp (—bt),
for some positive real numbers a and b.

Proof: Let B(g!, ,v/5) contain a vertex of 7. Let p
be the probability that in a boundary iteration a vertex con-
tained in B(g,"™,v/5) is added to T. From if
we obtain a sample ¢’ € B(git',/5), then T can reach
Project(qf;lé, M; N M;41). The Value p can be computed as
a product of the probabilities of two events: 1) a sample is
drawn from B(git!,v/5), and 2) T is extended to include
Project(q’t1, M; N Mi+1) The probability that a sample is
drawn from B(g¢it',v/5) is given by |B(gy™ 1//5)|/|C’|
where | B(gt, 1//5)\ and |C| are the volumes of B(q0 ,v/5)
and C respectively. From the proof of Lemma I| we infer that
the line joining gne,r and qf;;; is collision free. Thus T will
be augmented with a new vertex contained in M; N M, if

line 9 and 14 in are executed. The probability of

execution of line 9 and 14 is (1 — B)w, which
results in the joint probability
|B( il V/5)| (1 _ ﬁ) Tmax — ||h]\/[i+1 (Qnew)H (16)
|C| T'max '

Further, ||haz,,, (gnew)|| = 0 as guew is very close to M;iq
and |B(z{t,v/5)] < |C|, thus B can be picked such that
p < 0.5. For SMP* to reach M;,; from the initial point, the
boundary iteration should successfully extend 7" for at least n
times (there are n intersections between the n + 1 sequential
manifolds). The process can be viewed as ¢ > n Bernoulli
trials with success probability p. Let II; denote the number of
successes in ¢ trials, then

P <n] = ; ()ra-n.

where P[-] denotes the probability of occurrence of an event.
By using the fact that n < ¢, can be upper bounded as

P, < n] < ni (nt 1);9"(1 -p)'

=0

a7)

(18)



as p < 0.5,
n—1
t
P, < n] < (nl)zoa—p)f. (19)
Applying (1 — p) < exp (—p) yields,
P < n] < n( i 1) (exp (—pt)). (20)

Through further algebraic simplifications, we can show that

n n
P, <n] < e 1)!15 exp (—pt) . 21
|
As the failure probability of SMP* exponentially goes to zero

as t — oo, SMP* is probabilistically complete.

VIII. ASYMPTOTIC OPTIMALITY

For ease of reference, we begin by giving some definitions
and stating some lemmas initially introduced in [21], which
are required for proving the asymptotic optimality of SMP*.

Definition 2: A path 71 is said to be homotopic to 7 if there
exists a continuous function H : [0, 1] x [0, 1] — UM, called
the homotopy [[13], such that H(t,0) = 71(t), H(t,1) = 12(t),
and H(-,«) is a collision-free path for all « € [0, 1].

Definition 3: A collision-free path 7 : [0, 1] — UM is said
to have weak §-clearance, if there exists a path 7’ that has
strong J-clearance and there exists a homotopy H : [0, 1] x
[0,1] - UM with H(¢,0) = 7(¢), H(t,1) = 7'(t), and for
all a € (0, 1] there exists d, > 0 such that H (¢, «) has strong
dn-clearance.

Lemma 2: [21, Lemma 50] Let 7* be a path with weak ¢-
clearance. Let {J, },en be a sequence of real numbers such
that lim §,, = 0 and 0 < §,, < ¢ for all n € N. Then, there

n—oo

exists a sequence {7, }nen Of paths such that lim 7, = 7*
n— oo

and 7, has strong d,-clearance for all n € N.
The above lemma establishes the relationship between the
weak and strong d-clearance paths.

If the configuration space admits a vector space structure,
then it can be shown that the space of paths on the con-
figuration space above also admits a vector space structure.
Moreover the space of path becomes a normed space, if it is
endowed with the bounded variation norm [43]]

Iy £ / r(t)ldt + TV(r).

TV(7) denotes the rotal variation norm [43] defined as

(22)

TV(r) = sup Z |7(t;) — 7(tiz1)]- (23)

{neN, 0=t <ta2<...<t,=1} i=1

Using the norm in the space of paths, the distance between
the paths 71 and 75 can defined as

1
Ir1 — 7almy = / () — m@)]dt + TV(m — 1), (24)
0

The normed vector space of paths enables us to mathematically
formulate the notion of the convergence of a sequence of paths
to a path. Formally, given a sequence of paths {,,},n € N,

the sequence converges to a path 7, denoted as lim 7, =7,
n—oo

if lim HTn — 77_HBV =0.

Let P denote the set of weak d-clearance paths which
satisfies the constraints in Let 7 € P be a
path with the minimal cost. Due to the continuity of the cost
function, any sequence of paths {7, € P},n € N, such that
lim 7, = 7* also satisfies lim J(7,) = J(7*). For brevity,
n—oo n—oo
we identify J(7*) with J* and JSMP denotes the random
variable modeling the cost of the minimum-cost solution
returned by SMP* after n iterations. The SMP* algorithm is
asymptotically optimal if

P lim S = | =1 (25)
A weaker condition than is
P [lim sup JoMP = J*} =1. (26)
n— oo

Note that from [21, Lemma 25], we infer that the probability
that limsup,,_, . JoMP = J* is either zero or one. Under the
assumption that the set of point traversed by an optimal path
has measure zero, [21, Lemma 28] proves that the probability
that SMP* returns a tree containing an optimal path in finite
number of iterations is zero.

Since SMP* is based on RRT*, we focus on how our
technique affects the proofs of asymptotic optimality for
RRT*. Also, the work in [25] has shown that RRT* is optimal
when applied on a single manifold. Furthermore, it is shown in
[25] that the steering parameter ~y in the single manifold case

k
can be bounded from below by (2 (1+ %) W) ,
where D, is the set of points in R* which are projected on ¢
and (j/(1) is the set points in R* which are projected onto a
unit open ball contained in the manifold M. In this section, we
show that under the assumption p = 0 in with
probability one SMP* eventually returns the optimal path.

Let {Q1,Q2,...,Q,} be a set of independent uniformly
distributed points drawn from Cle and let {I,Is,...,I,}
be their associated labels that outlines the order of the
points with support [0,1]. In other words, a point Q; is
assumed to be drawn after another point Q); if I; < I;. Let
{Ql, Qs, ..., Qn} be the set of points resulting from projecting
the point set onto the manifolds as delineated in lines 13-
17 of Similar to [21]], we consider the graph
formed by adding an edge (Ql, Q;), whenever (i) I; < I; and
(i) Qi — Q;]| < 7 = 'y(loglg/iv”l))%, where V,, is the vertex

|

set of the graph and v is the steering parameter used in

Algorithm 1| Let this graph be denoted by G, = (V,,, E,,).

With slight abuse of notation, if JSMP((Q);) denotes the cost of
the best path starting from gy to the vertex Q7 in the graph
G. Consider the tree G,, which is a subgraph of G, where
the cost of reaching the vertex Q; equals JSMP(Q;). Since
SMP* uses RRT* for graph construction, it is easy to see that
the tree returned by SMP* at the n-th iteration is equivalent
to G,,. Therefore, if limsup,, ., JSMP(M,, 1) converges to
J* with probability one with respect to G,, then it implies
that with probability one SMP* will eventually return a tree

that contains the optimal path connecting gy, and the goal



manifold M,,;;. Hence, our next step is focused on showing
that the optimal path in G,, converges to 7*.

According to there exists a sequence of strong
d—clearance paths {7,,}men that converges to an optimal
path 7*. Let By, = {Bm.1, Bm.2, -, Bmp} be a set of open
balls of radius r,, whose centers lie on the path 7, such
that adjacent balls are placed 2r,, distance apart. The number
of balls p is assumed to be large enough to cover 7,,, i.e.
Tm \ (U_1 By, N 7Ty) is a set of measure zero. Moreover,
we denote Bm,i as the region obtained as the intersection of
the open ball B,,; with the manifold containing its center.
Let ©,, ; denote the event that there exists vertices Ql and Qz
such that QZ € Bm i Ql € By, i+1 and I; > I;. Recall that, I;
and I; are the labels associated with projected points Ql and
Q; respectively. Also note that the edge (Q;, Q;) is included
in G,,. We use p(-) to denote a measure on the configuration
and D, denotes the set of points that can be projected on the
point ¢ € UM. Additionally, (1) is defined as

A
¢ 2 max min (U, nDa). @D
where By, (¢, 1) is formed by the intersection of a open unit
ball centered at point ¢ € M with M. If ©,,, = ﬂfﬂ@mﬂ;,
then the following lemma proves that with probability one, the
event O, ; for all i € {1,2,...,p} occurs for large m.

Lemma 3: If

D) ()

then ©,, for all large m, with probability one,
P(lim inf,,— o Oy) = 1.

The proof of the above lemma follows from the proof of
21, Lemma 71] if we replace p(Chee) With pu(UgeumDy)
and infer that the probability of finding a vertex of the
graph in me is %. If £,, denotes the set of
all paths that satisfy the constraints in [Equation 1] that are
contained in the tree returned by SMP* after n iterations and

(28)

ie.,

7SMP & min  ||[7SMP — 7, ||gv then the following lemma can
TSMPc
be proven.
Lemma 4: |21, Lemma 72] The random variable
| 7SMP — 7. ||y converges to zero with probability one:
i [ lim (|75 — 7, gy = 0} =1 (29)
Recall that by construction lim 7, = 7*. Expressing
. m—0o0
Equation 29| as
P [ lim [[75MP — 7 — (7 — %) |y = 0] -1 (30)
n—oo

and applying the triangle inequality yields

72N =7 = (T =7 lBy = |73 = 7*|lBv — |7 — 77 ||BV-

From [Equation 29|and since P { lim |7 — 7|y = 0} =1
m—o0

yields the Tollowing result:

[ lim ||75MP — 7%||gy = O} =1.
n— 00

€29

From the continuity of the cost function and due to the fact
that J3MP < JMP i € N and JPMP > J* we obtain the

required result (Equation 25)).

I1X. DISCUSSION

In this work, we proposed the algorithm SMP* that solves
sequential motion planning problems. The problem was de-
fined as a constrained optimization problem, where the goal is
to find a collision-free path that minimizes a cost function
and fulfills a given sequence of manifold constraints. The
algorithm is applicable to a certain problem class that is
specified by the intersection point independent property, which
says that the change in free configuration space is independent
of the selected intersection point between two manifolds. The
proposed algorithm uses RRT* with a novel steering strategy
that is able to discover intersection points between manifolds.
We proved that the algorithm is probabilistic complete as well
as asymptotically optimal and demonstrated it on multi-robot
transportation tasks.

In this paper, we restricted the problem class to intersection
point independent planning problems, which allowed us to
develop efficient solution strategies like growing a single tree
over a sequence of manifolds. An interesting question for
future research is how to extend the strengths of SMP* to a
larger problem class. We would like to study how SMP* can be
used for problems that do not fulfill the intersection point inde-
pendent property. For such problems, the choice of intersection
points influences the future parts of the planning problem,
which results in a more complex problem. An interesting
aspect that our future work will address is the effect of an
intersection point on subsequent manifolds and how solutions
for one intersection point can be reused and transferred to
other intersection points without replanning from scratch.
Further, we plan to investigate the reduction of such problems
to the simpler intersection point independent problem class,
for example, by morphing object geometries into simpler
shapes such that the intersection point independent property is
fulfilled. SMP* could be applied to the reduced problem and
provide a good initial guess for solving the original problem.

Another interesting research direction is the combination
of this work with trajectory optimization techniques [6] that
define the motion planning problem in a similar manner.
Trajectory optimization methods could be integrated into the
steering strategy of SMP* or the solution of the proposed
method could be used as an initialization for trajectory op-
timization to achieve faster convergence.

A future direction we already have begun exploring is the
integration of learning techniques into the motion planner [[14].
Here we assumed the user has the knowledge and capability
to write the constraint manifolds for the entire task sequence.
However, this may not always be the case, or it may be more
convenient to give demonstrations of a task such that the
constraints can be automatically extracted for future planning.
To this end, we are beginning to explore neural network
models that are able to learn manifold constraints from robot
demonstrations. We train these networks to represent level-
set functions of the constraint by aligning subspaces in the
network with subspaces of the data. We integrated such learned
manifolds together with analytically specified manifolds into
a planning problem that was solved with SMP*.
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