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Abstract

These are the lecture notes prepared by the author for the seminar course offered in summer 2019 at the com-

puter science department of University of Southern California. The notes covers important areas of mathematics

with its emphasizes in robotics applications. The manuscript gives a brief overview on various mathematical

subjects such as real analysis, abstract algebra, linear algebra, dynamical systems, topology and differential ge-

ometry. The primary goal of this seminar course is to introduce some important topics in mathematics and give

a pictorial view that can be associated with these concepts. Therefore, the author do not assume any background

for the reader other than high school mathematics. But, a good intuitive understanding of multivariate calculus

is recommended.
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1 Analysis

1.1 Why analysis?

Analysis is the rigorous study of such objects, with a focus on trying to pin down precisely and accurately the

qualitative and quantitative behavior of these objects. Complex analysis, which concerns the analysis of the com-

plex numbers and complex functions, harmonic analysis,which concerns the analysis of harmonics (waves) such as

sine waves, and how they synthesize other functions via the Fourier transform, functional analysis, which focuses

much more heavily on functions (and how they form things like vector spaces), and so forth.Real analysis is the

theoretical foundation which underlies calculus, which is the collection of computational algorithms which one uses

to manipulate functions [27]. The idea for real analysis is to identify the constitution of real numbers and function

between real numbers. In general, understanding real analysis helps you answer the following questions:

1. What is a real number? Is there a largest real number? After 0, what is the ”next” real number (i.e., what is

the smallest positive real number)? Can you cut a real number into pieces infinitely many times? Why does

a number such as 2 have a square root, while a number such as -2 does not? If there are infinitely many reals

and infinitely many rationals, how come there are ”more” real numbers than rational numbers?

2. How do you take the limit of a sequence of real numbers? Which sequences have limits and which ones don’t?

If you can stop a sequence from escaping to infinity, does this mean that it must eventually settle down and

converge? Can you add infinitely many real numbers together and still get a finite real number? Can you

add infinity many rational numbers together and end up with a non-rational number? If you rearrange the

elements of an infinite sum, is the sum still the same?

3. What is a function? What does it mean for a function to be continuous? differentiable? integrable? bounded?

can you add infinitely many functions together? What about taking limits of sequences of functions? Can

you differentiate an infinite series of functions? What about integrating? If a function f(x) takes the value of

f(0) = 3 when x = 0 and f(1) = 5 when x = 1, does it have to take every intermediate value between 3 and 5

when x goes between 0 and 1? Why?

It is a fair question to ask, ”why bother?”, when it comes to analysis. There is a certain philosophical satisfaction

in knowing why things work, but a pragmatic person may argue that one only needs to know how things work

to do real-life problems. The calculus training you receive in introductory classes is certainly adequate for you

to begin solving many problems in physics, chemistry, biology, economics, computer science, finance, engineering,

or whatever else you end up doing - and you can certainly use things like the chain rule, L’Hôpital’s rule, or

integration by parts without knowing why these rules work, or whether there are any exceptions to these rules.

However, one can get into trouble if one applies rules without knowing where they came from and what the limits

of their applicability are. Lets see some examples in which several of these familiar rules, if applied blindly without

knowledge of the underlying analysis, can lead to disaster.
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Example 1. (Division by zeros). Consider this proof:

Let x = y 6= 0 (1.1)

x2 = xy (1.2)

x2 − y2 = xy − y2 (1.3)

(x+ y)(x− y) = (x− y)y (1.4)

x+ y = y (1.5)

2x = x (1.6)

2 = 1 (1.7)

Example 2. (Divergent series). Consider the series,

S1 = 1 +
1

2
+

1

3
+

1

4
+ · · · (1.8)

and the series,

S2 = 1 +
1

2
+

1

4
+

1

8
+ · · · (1.9)

S1 is a slowly diverging series whereas S2 is a converging series. One has to be careful while working with series

since only operations with converging series yields meaningful results.

These notes merely touch upon some of the concepts in real analysis. Readers interested in diving deep into these

topics are directed to the following references: [18, 22,27].

1.2 Some definitions

Definition 1. A set is countable if it is finite or has the same cardinality as N.

Example 3. A, B, C, D, the set of natural number.

Definition 2. A set is uncountable if it is not countable.

Example 4. The set of real numbers, set of complex numbers

Theorem 1.1. The union of a countable collection of countable sets is countable.

Is the set of rational numbers countable or uncountable? ans: countable.

Definition 3. (Rational number construction). The equivalence classes of integer pairs such at pairs (a, b) and

(c, d) are equivalent if a · d = c · b. Usually denotes as Q.

Definition 4. A sequence is a function from N into some set.

Definition 5. A xn is a subsequence of yn if there exists integers 1 < k1 < k2 < k3 · · · such that:

xn = ykn

Theorem 1.2. Let E be the set of all sequences whose terms are the digits 0 and 1.Then, E is uncountable

An interesting consequence of the above is that, almost every decision problem is unsolvable by any program. The

way we prove this statement is by associating every program to a binary natural number and showing the space

of all decision problem is isomorphic(equivalent) to R. Any decision problem is a map from at least a countably

infinite set to {0, 1}. Therefore, a decision problem is a infinite sequence of 0 and 1, and the set of decision problems

is uncountable. But the space of programs has the same cardinality as N.
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Definition 6. Let A ⊂ R̄, then b is a real number is an upper bound for A if A ⊂ [−∞b]. Similarly, one can define

a lower bound. The least upper bound is called the supremum of A and greatest lower bound is called the infimum.

Definition 7. (Limits). We can also define limits of sequence using supremum and infimum of increasing and

decreasing respectively. For a decreasing sequence xn, limxn is inf xn and similarly for an increasing sequence.

Let,

~xm = inf
n≥m

xn, x̄m = sup
n≤m

xn, m ∈ N (1.10)

Definition 8. (Limit inferior).

lim inf xn = lim ~xn = sup
m

inf
n≥m

xn. (1.11)

Definition 9. (Limit superior).

lim supxn = lim x̄n = inf
m

sup
n≥m

xn. (1.12)

1.3 Metric Spaces

Definition 10. A space is a set with some additional structure.

A metric space is a tuple (E, d), where E is a set and d : E×E→ R+ is metric function. A metric function satisfies

the following condition ∀x, y, z ∈ E:

1. d(x, y) = d(y, x).

2. d(x, y) = 0 if and if only if x = y.

3. d(x, y) + d(y, z) ≥ d(x, z).

Example 5. Euclidean spaces. Metric space (Rn, ‖ · ‖2).

Example 6. The space of continuous function in the interval [0, 1]. The distance function for the space:

d(x, y) = sup
0≤t≤1

|x(t)− y(t)|. (1.13)

Definition 11. Distance to a point from a set. Let (E, d) be a metric space. If x ∈ E and A ⊂ E, then

d(x,A) = inf{d(x, y) : y ∈ A} (1.14)

Definition 12. Diameter of a set. The diameter of a set A ⊂ E is defined as:

diamA = sup{d(x, y) : x ∈ A, y ∈ A}. (1.15)

Definition 13. Open ball defined on a metric space (E, d) centered at x with radius r:

B(x, r) = {y ∈ E : d(x, y) < r}. (1.16)

Definition 14. A set A is said to be open if for every x ∈ A there is an r > 0 such that B(x, r) ⊂ A. A set is said

to be closed if it complement is open.
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Example 7. If the metric space is R, then (a, b), (−∞, b), (a,∞) are open sets and [a, b] is a closed set.

Properties:

1. Arbitrary union of open sets are open.

2. Finite intersections of open sets are open.

Definition 15. Convergence of sequence. A sequence xn in (E, d) is said to be convergent, if there exist an element

x ∈ E, such that lim d(x, xn) = 0.

The definition includes implicitly the fact that the limit is unique. It is easy to show this through triangle inequality.

There is an interesting theorem about convergent sequences and closed set. If we think of particle in a closed set

jumping from one element in a convergent sequence to another. The particle can never escape the closed set.

Theorem 1.3. A set is closed if and only if it contains the limits of every convergent sequence in it.

The definition of convergence is not very useful in practice. If you think about it, the definition requires knowledge

of the sequence limit which if you know in advance then problem is solved in the first place.

Definition 16. (Cauchy sequence). A sequence is a Cauchy sequence if for every ε > 0 there exist a nε such that

d(xm, xn) < ε for every m > n ≥ nε.

Cauchy sequences are bound. Convergent sequence are Cauchy. But the reverse is not always true.

Example 8. Consider the following sequence of rational numbers in Q,

qn = (1 +
1

n
)n.

It is easy to show that the above sequence is a Cauchy sequence. But the sequence converges to e which is an

irrational number. Therefore, the Cauchy sequence does not converge to a point in set of rational numbers.

Definition 17. (Complete Metric). A metric space is complete if every Cauchy sequence in the space is a convergent

sequence.

1.3.1 Construction of real number from Cauchy sequence

One natural way to construct complete space from and an existing metric space is by taking every possible Cauchy

sequence limit in the metric space and adding it to space yielding a new complete metric space. Interestingly, If we

take Q and add the limits of all its Cauchy sequence we get the real line. This is one way to construct real number.

Euclidean space is a complete metric space.

1.4 Continuous maps or functions between metric spaces

A map or function f , f : A −→ B, connects each element of a set A (domain set) to an element of a set B (target

set).

Definition 18. A map f : A −→ B is locally continuous at a point x ∈ A if there exists an open set V ⊂ B
containing f(x) such that f−1(V)(preimage) is an open set of A.

This definition can be extended to talk about continuity of a map in a global sense:

Definition 19. A map f : A −→ B is continuous if preimages of all open sets in B are open set of A.
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1.5 Compactness

Given an metric space with an underlying set E. We define the following.

Definition 20. (Open cover). A collection of open sets {Ci ∈ E}i∈I is said to be an open cover of A ⊂ E, if

A ⊂ ∪
i∈I

Ci.
Definition 21. (Compact set). A set A ⊂ E is said to be a compact if for its every open cover there exist a finite

sub-cover containing the set.

Compactness gives an intuition that at the set is not “huge” and therefore is easier to work with. Most mathematical

theorems are first studied in a compact setting before being generalized to much “larger” spaces.

Some properties of compact sets in metric spaces:

1. Every compact set is bounded

2. Every closed subset of a compact set is compact

3. Every compact set is closed

4. Every compact set is complete

Every compact set is closed and bounded. The converse is not true in general. The next theorem states that it is

true for Euclidean spaces.

Theorem 1.4. (Heine-Borel Theorem). Every subset of an Euclidean space is compact if and only if it is closed

and bounded.

Theorem 1.5. Image of a continuous map from a compact set is compact.

Why do we care? This property is the key to existence of global optima in optimization problem. A cost function

is a mapping from our search space of interest to R. If our search space is compact then by using Theorem 1.5

we can show the cost function attains its maxima and minma in the search space. This idea is key to the famous

Weierstrass Extreme Value Theorem.

1.6 Dense sets

Definition 22. (A dense set). A set A ⊂ E is a dense set if for every open set containing e ∈ E contains at least

one point from A.

Example 9. Rational and irrational numbers are dense set of real numbers. Moreover, rational number set is

countable dense set. Note that rational numbers and irrational number are complements to each other.

The concept of dense set are very important for approximation theorems. Whenever we are trying to find a good

approximation to some set, we are ideally looking for a dense subset of the set that can be handled easily. In an

important theorem useful in practice concerning dense sets is the Weierstrass approximation theorem, which states

that every continuous function on a closed interval can be approximated as closely as desired by a polynomial

function.

1.7 Integration

Definition 23. Let I be a nonempty, compact interval. A partition of I is a finite collection P = {I1, I2, I3, · · · In}
disjoint interval such that their union is I. If I = [a, b] and a = x0 < x1 < · < xn−1 < xn = b, then Ik = [xk−1, xk].

8



Definition 24. Let f be a bounded function defined on [a, b], then Mk = sup{f(t) : t ∈ Ik} and mk = inf{f(t) :

t ∈ Ik}. We define the upper sum associated with the partition P as U(f,P) =
∑n
k=1Mk(xk − xk−1). Similarly,

the lower sum associated with the partition P as L(f,P) =
∑n
k=1mk(xk − xk−1).

Figure 1.1: A figure illustrating the idea of Riemann

integral(top) and Lebesgue integral(botton)(Image from

Wikipedia). (Top) We construct vertical strips to com-

pute a Riemann integral. (Bottom) We construct hori-

zontal strip to compute a Lebesgue integral.

Clearly, L(f,P) ≤
∫
[0,1]

fdx ≤ U(f,P).

Definition 25. (Riemann integral). sup
P
L(f,P) =∫

[0,1]
fdx = inf

P
U(f,P)

The Riemann integral has certain issues for example

consider the function 1Q defined as:

1Q(x) =

1, if x ∈ Q

0, otherwise
(1.17)

We cannot compute the Riemann integral of this func-

tion. Why?

This is where a new kind of integral called the Lebesgue

integral comes for help. The idea is instead of par-

titioning the domain of the function we partition

the codomain of the function to compute the inte-

gral.

To define the Lebesgue integral requires the formal no-

tion of a measure that, roughly, associates to each subset A of real numbers a nonnegative number µ(A) representing

the ”size” of A. This notion of ”size” should agree with the usual length of an interval or disjoint union of intervals.

Suppose y = f(x) is a bounded non negative function defined on [a, b], then area of an horizontal strip between

y = t and y = t + dt is given by µ(x : t < f(x) < t + dt)dt(think of µ(A) as the area of the region containing the

set A). The total area under f can be computed by summing all the horizontal strips as:∫ sup f(x)
[a,b]

0

µ(x : t < f(x) < t+ dt)dt (1.18)

This is roughly the idea of a Lebesgue integral. A more common and elegant approach for constructing Lebesgue

integral is achieved using the concept of simple functions
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2 Coordinate free Linear Algebra

2.1 Motivation

Objects in real world exist independent of the coordinate system we use to describe them. For example, your school

and house are place at various locations and, the distance between them is independent of the unit you choose to

measure them. Therefore, it is important to describe these objects in a coordinate free way, so that our description

of these object do not change with specific units we use to quantify them. For example, if we are developing a

robotics algorithm for localization problem, it should not depend on the fact that we choose to align the robot’s

motion along one of the axis instead of another or the fact that we choose a polar coordinates instead of cartesian

coordinates. In this section, we will discuss about how vector spaces can be viewed in a coordinate free manner.

Of course, for computational purpose we will have to rely on a coordinate system to describe the object of interest.

But it is important to keep mind about the geometry of the object that we have assigned a coordinate system to.

We will begin this session by introducing the concepts from abstract algebra such as groups, rings, fields, and vector

spaces. Thereafter, we will be focusing on vector spaces and maps between them. We will be return to ideas in

group theory in a later session when we will be discussing about Lie groups. Some good references to the ideas

presented in this session are [1, 9, 11].

2.2 Groups

Definition 26. (Group). A group (G, ◦) is a set G with the composition law ◦ : G × G −→ G which satisfies the

following conditions or axioms:

1. (Associativity) a ◦ (b ◦ c) = (a ◦ b) ◦ c, ∀a, b, c ∈ G.

2. (Identity element) There exist an element e ∈ G such that a ◦ e = e ◦ a = a.

3. (Inverse element) For every element a ∈ G there is an element denoted as a−1 such that a◦a−1 = a−1 ◦a = e.

Note that, the group composition law need not be commutative. But if the group composition law is commutative

then the group is term as an abelian group.

Examples of groups are: 1) Integers with the addition operation, 2) R − {0} with multiplication operation, 3) set

of invertible Rn×n matrices with the matrix multiplication operation 4) equivalence classes of integer mod n under

addition.

Identify the abelian and non abelian groups in above example.

A group is finite if it underlying set contains finite elements. Likewise, a group has infinite order it the underlying

set is infinite.

Some properties of groups:

1. The identity element in a group is unique.

2. Every element has an unique inverse.

3. (a ◦ b)−1 = b−1 ◦ a−1 for all a, b ∈ G.

4. (a−1)−1 = a.

5. All exponent law hold for groups

10



Definition 27. (Subgroups). A set of group which is also a group when the group operation is restricted to the

subset.

Example 10. SO(2), SE(2) subgroups of invertible matrices, integers with addition operation.

What are the conditions required for a subset of a group to be a subgroup.

1. The identity element of the original group should be contained in the subset.

2. associativity and existence of inverse elements.

2.3 Rings

Group are objects with a single binary operation satisfying some axiomatic conditions. But often we are interested

in objects which allow two binary operations. For example, integers with the natural addition and multiplication

operations. If one recalls the properties of these operation from his/her primary school, one could find that these

two operations are related through something called as a distributive property.

Definition 28. An non empty set (R) is a ring if it admits two binary operations + and · satisfying the following

conditions ∀a, b, c ∈ (R):

1. a+ b = b+ a.

2. (a+ b) + c = a+ (b+ c).

3. There exists and element 0 ∈ (R) such that a+ 0 = 0 + a = a.

4. For every a there exist an unique element −a ∈ (R) such that a+−a = 0.

5. (a · b) · c = a · (b · c).

6. (a+ b) · c = a · c+ b · c
a · (b+ c) = a · b+ a · c.

Example 11. Q with natural addition and multiplication, continuous real values function on a closed interval(x2, sin(x)).

3× 3 real matrices under matrix addition and multiplication.

Note that a ring does not require to have an inverse element with respect to · operation. If we include this

requirement, along with the commutative property of · into the definition of rings we end up with a new algebraic

structure called field.

2.4 Field

Definition 29. A field is a set F together with two binary operations + and ◦ satisfying the following conditions

∀a, b, c ∈ F:

1. a+ b = b+ a.

2. (a+ b) + c = a+ (b+ c).

3. There exists and element 0 ∈ (R) such that a+ 0 = 0 + a = a.

4. For every a there exist an unique element −a ∈ F such that a+−a = 0.

5. (a · b) · c = a · (b · c).

6. a · b = b · a.
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7. (a+ b) · c = a · c+ b · c
a · (b+ c) = a · b+ a · c.

8. There exists and element 1 ∈ F such that a · 1 = 1 · a = a.

9. For every a 6= 0 there exist an unique element a−1 ∈ F

Fields are very common in mathematical constructs used in algebra. The various examples of fields include: 1) real

number with usual addition and multiplication, 2) Complex numbers.

2.5 Vector space

Definition 30. A vector space V over a field F is an abelian group with scalar product α� V or αV for all α ∈ F
and all V ∈ V satisfying the following axiom:

1. α(βV ) = (αβ)V ;

2. (α+ β)V = αV + βV ;

3. α(V + U) = αV + αU ;

4. 1V = V ;

for all α, β ∈ F and V,U ∈ V

An element in a vector space is called a vector.

Example 12. If F is a field, then F [x] is a vector space over F. The vectors in F [x] are polynomials.

Example 13. The set of all continuous real-valued functions on a closed interval is a vector space over R. This

example can be generalized to set of all continuous functions on a closed set to any field F.

Definition 31. V = {a+ b
√

3 : a, b ∈ Q} is a vector space over Q.

Example 14. The set F∞ is the set of all infinite sequences of elements of F.

In short, a vector space is a set of objects that can be added together and scaled in nice ways. A vector space is a

real vector space if the underlying field is R. Similarly, a vector space is termed as a complex vector space if F is

the space of complex numbers.

2.6 Subspace

A subset U ⊂ V is subspace of V if U is a vector space.

Example 15. The line y=x is a subspace in R2.

Example 16. The set of all continuous functions defined on the closed interval [0, 1] is a subspace of R[0,1](set of

all function in the interval [0, 1]).

Example 17. The set of differentiable functions on the open interval (0, 4) such that f ′(2) = b is a subspace of

R(0,4) if and only if b = 0. Why?

Because f(x) = 0 should be in the subspace which implies f ′(x) = 0 should be present in the subspace.

2.7 Span, Linear independence and Basis

A linear combination of the elements in set {V1, V2, · · ·Vm} is defined as:
∑m
i=1 αiVi, αi ∈ F.

The span of {V1, V2, · · ·Vm} is the set of all linear combination.
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The elements in a set {V1, V2, · · ·Vm} are linearly independent if and only if no element in the set can be written

as a linear combination of the other elements.

A vector space is finite dimensional if the entire space can be spanned by a finite number elements. A vector space

is infinite dimensional if it is not finite dimensional.

A basis of a vector space is a collection of elements in the vector space which are linearly independent and span the

entire space.

2.8 Linear maps

The vector space of all polynomials with coefficients in F is denoted by P(F).

Definition 32. A linear map from V to W is a map T : V −→W such that: T(αV1+βV2) = αT(V1)+βT(V2) α, β ∈
F, V1, V2 ∈ V.

The set of all linear map from V to W is denoted L(V,W). This space is a vector space.

Example 18. 0 ∈ L(V,W), I ∈ L(V,W), (Differentiation operation)D ∈ L(P(R),P(R)) and (Integration) TI ∈
L(P(R),R), TI(p) =

∫ 1

0
p(x)dx

2.8.1 Matrix representation of linear map

Suppose T ∈ L(V,W) and {V1, V2, · · ·Vn} are a basis for V and {W1,W2, · · ·Wm} are a basis for W. The m − n
matrix with respect to these bases M(T) whose entities Aj,k are defined by:

TVk = A1,kW1 +A2,kW2 + · · ·+Am,kWm

Note that the matrix representing the linear map depends on basis used for the spaces.

Example 19. Consider the linear map T ∈ L(R2,R3):

T (x, y) = (3x+ y, x+ 4y, 2x+ 6y)

T (0, 1) = (1, 4, 6) and T (1, 0) = (3, 1, 2), then the matrix associated with the map with the standard basis is

M(T) =

1 3

4 1

6 2



2.9 Invertibility and Isomorphism

Definition 33. A linear map T ∈ L(V,W) is invertible if there exist a linear map S ∈ L(W,V) such that ST

equals the identity map on V and TS equals the identity map on W.

Definition 34. A linear map T ∈ L(W,V) is the inverse of T ∈ L(V,W) if ST = I and TS = I

Definition 35. Two vector spaces are isomorphic is there exist a invertible linear map between them.

Think isomorphism as relabeling of the elements.

Theorem 2.1. Two finite dimension vector spaces are isomorphic over F if and only if they have the same dimen-

sions
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2.10 Dual vectors(Covectors)

How can we multiply vectors?

Dual vectors gives a framework to do this. Strictly speaking this intuition is incorrect, as dual vector can be thought

as an multiplication operator only in an inner product space specifically Hilbert space.

As a motivation, consider the following example. Lets consider the space of vegetables: onion, tomato and carrot.

Now any purchase of these vegetable would be a point in this vector space: 3 ~onion+4 ~tomato+5 ~carrot. Now lets say

we want to compare two such purchases, for example 3 ~onion+4 ~tomato+5 ~carrot and 2 ~onion+1 ~tomato+15 ~carrot.

Since a notion of length, angle between vectors or a metric cannot defined for this vector space(no sense in that) it is

not possible to perform this task. But if we define a linear price function p such that p(3 ~onion+4 ~tomato+5 ~carrot) =

3p( ~onion) + 4p( ~tomato) + 5p( ~carrot), where p( ~onion), p( ~tomato) and p( ~carrot) denote the unit price of the three

vegetable respectively then we compare them on the basis of their total price. The space of price function is the

dual space of vegetable vector space. Note that the price vector and vegetable vector are interchangeable.

Definition 36. A linear function on V is a linear map from V to F denoted as L(V,F) . This is denoted as V′

In essence, a covector eats a vector and splits out an element in F.

Example 20. φ(x, yz) : (3x+ 8y + 5z), φ : P(R) −→ R, φ(p) = p′′(3) + 4p(2), φ : P(R) −→ R, φ(p) =
∫ 1

0
p(x)dx.

Example 21. The function < V1, · > where < ·, · > is the inner product in Rn and V1 ∈ Rn.

Theorem 2.2. For finite dimensional vector spaces the space and its dual has the same dimension.

In finite dimensional vector spaces vectors can thought as column vectors and covectors can be thought as row

vectors.

Definition 37. (Dual basis). Suppose {V1, V2 · · ·Vn} is a basis for a vector space V, then {φ1, φ2, · · ·φn} is a dual

basis of V′ such that:

φj(vk) =

1, if k = j

0, otherwise

The level set of an element of dual space form a family of parallel hyperplanes in vector space. In 2D this becomes

parallel lines.

The relationship in the previous definition is called the principle of duality. The different choice of vector basis would

yield different set of coordinate functions(dual vector basis), but principle of duality still remain the same.

2.11 Quotient space

Till now we looked at how to add vectors, when and how to multiply vectors. Now lets think about how to define

division operation in a vector space. Think about how we divide 12 by 3, the answer is of course 4. The important

thing to understand here is what we are doing in terms of the object involved in the operation. In other words,

when we divide 12 by 3, what we are essentially asking is: if we had 12 objects(e.g. pencils) how many groups of 3

does the set of 12 objects contain. This intuition is used to define the notion of a quotient space.

Definition 38. (Cosets). For each element V ∈ V, the coset of V with respect to the subspace W denotes by

V + W is defined as:

V + W = {V +W : W ∈W} (2.1)

Theorem 2.3. Let V1, V2 ∈ V, then V1 + W = V2 + W if and only if V1 − V2 ∈W
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If we define an equivalence relation such that V1 V2 if V1 − V2 ∈W, then we obtain an collections of equivalence

classes each for every coset. The equivalence class of a coset V + W is commonly denoted as [V ].

Definition 39. (Quotient space). The quotient space of V with respect the subspace W is the set of all equivalence

classes denoted as V/W.

Example 22. Let W = {(x, 2x) : x ∈ R}, then R2/W is the set of lines in R2 parallel to W.

Example 23. If W = {(x, y, 0) : x, y ∈ R}, then R3/W is the set of planes in R3 parallel to W.
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3 Linear systems

3.1 Motivation

Researchers have been trying to analyze and understand the characteristics of general dynamical systems for eons.

In early days, people believed that they could unravel the mysteries of nature and understand the way in which

universe works in an absolute sense. Soon they realized that, the analysis of a system is much easier if one restricts

the focus to specific characterizes of a system relevant to a problem of interest. This idea is generally referred as

modeling of system. Linear models are a kind of model which have been well studied and deeply understood by

researchers. Unfortunately, most reasonable models of systems are non-linear. Under certain conditions, one could

approximate a non-linear system with a linear system(linearization ) and understand the behavior of the non-linear

system by analyzing the derived linear system. Non-linear system theory is still an active area of research and

there are other ways to analyze non linear systems apart from linearizing them. In this section, we will concentrate

on linear time invariant systems and discuss about various techniques to analyze them. In the successive section,

we will look at some non-linear systems and explore some ways to understand the behavior of certain classes of

them. Some good references to the ideas presented in this session are [7, 10, 12]. Readers interested in non-linear

system theory and control may use the following references [13,24,29]. A more mathematically rigorous treatment

of non-linear system and control theory can be found in [23,25].

3.2 State space representation of linear systems

Consider following set of equations:

Ẋ(t) = A(t)X(t) + B(t)U(t), X(0) = X0 (3.1)

Y (t) = C(t)X(t) + D(t)U(t) (3.2)

The above set of equations can be used to represent a continuous time linear system. These set of equations is

referred to as a state space representation of a linear system. The variables used in the equations represent the

following quantities of the underlying system:

• t ∈ R≥0: time variable

• X(t) ∈ Rn: vector of n state variables

• U(t) ∈ Rm: vector of m input variables

• Y (t) ∈ Rp: vector of p output variables

• X0 ∈ Rn: initial condition of the system

• A ∈ Rn×n: state matrix

• B ∈ Rn×m: input matrix

• C ∈ Rp×n: output matrix

• D ∈ Rp×m: feedforward matrix.

When the matrices in the state space representation of a linear system are independent of time, then we term the

system as a linear time invariant system. The first equation describes the evolution of the state with respect to

time and is generally referred as state equation, and the next equation called output equation maps to state of the
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system to some observable outputs of the system. If the linear time invariant system of interest evolves in discrete

time then the dynamics of the system can be represented by the following discrete time state space equation.

X(k + 1) = AX(k) + BU(k), X(0) = X0 (3.3)

Y (k) = CX(k) + DU(k), k = 0, 1, 2 · · · (3.4)

In this section, we will restrict our attention to discrete time state space system as they more intuitive and easier

to understand, but keep in mind that the results transfer easily to continuous time linear systems in appropriate

sense.

Example 24. (Discrete time particle dynamics). Consider the following discrete time dynamics of a particle.

P (k + 1) = P (k) + TV (k) +
T 2

2
a(k) (3.5)

V (k + 1) = V (k) + Ta(k). (3.6)

The state space form of the above dynamics can be written as:[
P (k + 1)

V (k + 1)

]
=

[
1 T

0 1

][
P (k)

V (k)

]
+

[
T 2

2

T

]
a(k) (3.7)

Now if the particle is equipped with a localization device (e.g. GPS) then the output equation of the system takes

the form

P (k) =
[
1 0

] [P (k)

V (k)

]
(3.8)

3.3 General state transfer

Given a linear time invariant discrete time dynamical system and sequence of l inputs {U(0), U(1), U(2), · · · , U(l−
1)} then the system can be transferred from an initial state X0 to some final state X(l) if,

X(l) = AlX0 +

l−1∑
τ=0

Al−1−τBU(τ). (3.9)

Similarly, for a linear time invariant continuous time system, the general state transfer equation given an input

U : [0, t] −→ Rm can be expressed as,

X(t) = expAtX0 +

∫ t

0

expA(t−τ) BU(τ)dτ. (3.10)

3.4 Stability of autonomous system

A system of the form
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X(k + 1) = AX(k) (3.11)

is called an autonomous system. In other words, a system with no controls exerted on it. The stability of systems in

an essential part of control theory. The following statement defines stability of an linear time invariant autonomous

system.

Definition 40. A linear system X(k + 1) = AX(k) is said to be stable if

lim
k−→∞

X(k) = 0

starting from an initial state X0.

The next theorem gives the necessary and sufficient condition required for the stability of autonomous systems.

Theorem 3.1. An linear time invariant discrete time autonomous system is stable if and only if all the eigen values

of A have a magnitude less than 1.

3.5 Controllability

Consider state transfer from some initial state X0 to X(l), we say X(l) is reachable in l steps or epochs. The set

Rl ⊆ Rn defined as:

Rl = {
l−1∑
τ=0

Al−1−τBU(τ) : U(τ) ∈ Rm} (3.12)

is the set of reachable state in l epochs.

• Rl is a subspace of Rn.

• Rl ⊆ Ro if t ≤ o.

Equation 3.9 came rearrange to obtain,

X(l)−AlX0 = Cl



U(l − 1)

U(l − 2)
...

U(1)

U(0)

 (3.13)

where Cl =
[
BAB · · ·Al−1B

]
. Therefore, the reachable set at l, Rl = range(Cl). We know from Cayley Hamilton

theorem that Ak for k ≥ n can express as a linear combination of A0,A, · · · ,An−1. Hence for l ≥ n, range(Cl) =

range(Cn). Thus we have

Rl =

range(Cl) l < n

range(Cn) l ≥ n.
(3.14)
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Cn = C is referred in literature as the controllability matrix of the system[10]. Note that any state that can be

reached can be reached by l = n epochs. In that case the reachable set R = range(C).

A system is reachable or controllable if all the state are reachable (i.e.R = Rn).

Definition 41. A system is reachable if and only if Rank(C) = n.

Moreover, if a system is controllable then any state can be reached in epochs ≤ n.

From a robotics perspective, controllability gives insight into whether trajectories are possible. If a system is

controllable then we can plan trajectories between any two points in the configuration.

An interesting question to ask at this moment is : how hard is it to steer a system for one state to another? In

other words, what is the minimum control effort required to steer a system to some desired state. This leads us to

the idea of a controllability gramian.

If the system is controllable, particularly, the system of linear equations described in Equation 3.13 has a solution for

all X(l), then we would like to compute the minimum norm solution for this system of linear equations. Minimum

norm solution for a system of linear equations is a well studied concept in linear algebra for which easy to use

formulas are available [26]. The problem can also be framed as the following optimization problem.

min

l−1∑
τ=0

‖U(τ)‖2 (3.15)

subject to:

X(l)−AlX0 = Cl



U(l − 1)

U(l − 2)
...

U(1)

U(0)

 (3.16)

The solution to problem is given by



Umn(l − 1)

Umn(l − 2)
...

Umn(1)

Umn(0)

 = CTl
(
ClCTl

)−1
X̄(l), (3.17)

where the subscript mn is used to label the inputs as minimum norm inputs and X̄(l) =
(
X(l)−AlX0

)
. The

minimum value of the objective Equation 3.15 can be computed in the following manner.
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l−1∑
τ=0

‖Umn(τ)‖2 =
(
CTl
(
ClCTl

)−1
X̄(l)

)T (
CTl
(
ClCTl

)−1
X̄(l)

)
(3.18)

= (X̄(l))T
(
ClCTl

)−1
X̄(l) (3.19)

= (X̄(l))T

(
l−1∑
τ=0

AτBBT
(
AT
)τ)−1

X̄(l), (3.20)

where
(∑l−1

τ=0 AτBBT
(
AT
)τ)

is the finite time controllability gramian of the system. The controllability gramian

measures the degree of controllability of the system.

3.5.1 Stabilizability

A system is stabilizable if for any X(0) = X0, there exists a U(k) as a feedback law U(k) = f(X(k)) such that:

lim
k−→∞

X(k) = 0. (3.21)

Observe that Stabilizability is weaker than controllability.

Theorem 3.2. If a linear system is controllable then there exist a stabilizing linear feedback U(k) = −KX(k).

3.5.2 Pole placement

The basic idea behind the pole placement technique is to construct a linear state feedback gain matrix for a

controllable system such that its closed loop eigen values(eigen values of A−BK) match with some desired values

of interest. We will illustrate this idea with an example.

Example 25. Consider system,

Xk+1 =

[
0 1

−2 −3

]
Xk +

[
0

1

]
u, (3.22)

it can be easily verified that the system is controllable. The open loop poles of the system are −1 and −2. Suppose

we wish to design a state feedback gain matrix K = [k1k2] such that closed loop eigenvalues of the system are 0.5

and −0.5 then observe that the following condition,

det|zI− (A−BK)| = z2 + (3 + k2)z + (2 + k1) = 0 (3.23)

should be satisfied for all eigen values of the closed loop system. Therefore, by substituting the desired eigen val-

ues(0.5, -0.5) in the above equation yields,

0.25 + (3 + k2)0.5 + 2 + k1 = 0 (3.24)

0.25− (3 + k2)0.5 + 2 + k1 = 0 (3.25)

and solving them we obtain K = [−2.25− 3]. Therefore, can be regulated using the control u = [2.253]Xk.

The pole placement technique is easy to implement, but it has a major disadvantage, primarily, how to come up

with the desired eigen values for the closed loop system. It would be much easier if the computation of the gain
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matrix is based on a more intuitive quantity like energy of the control. This idea is the basis for the development

of Linear quadratic regulator or LQR.

Although, state feedback is an useful and powerful method for control design, it is usually not possible to measure

the full state of a system through its sensors. Therefore, it is required to build a filter or an estimator system which

can estimate the full state of the system using its outputs. In literature, such a system is commonly referred as a

state estimator or an observer. The common types of observers are luenberger observer and kalman filter. Next,

we will examine the conditions required for a system to build a good observer for it.

3.6 Observability

Definition 42. (Observability). A system is said to be observable if, for any initial state X(0) and for any known

sequence of inputs U(0), U(1), · · · , there is a positive integer l such that X(0) can be recovered from the outputs

Y (0), Y (1), · · · , Y (l).

If we iterate output equation of the linear time invariant system yields the following matrix equation,



Y (0)

Y (1)

Y (2)
...

Y (l)

 =



C

CA

CA2

...

CAl

X(0) +



D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D · · · 0
...

...
...

. . .
...

CAl−1B CAl−2B CAl−3B · · · D





U(0)

U(1)

U(2)
...

U(l)

 (3.26)

It is straightforward to see from the above matrix equation that observability depends on the matrix

[CT ; (CA)T ; (CA2)T ; · · · (CAl)T ]T which is referred as the observability matrix denoted using the symbol Ol. The

matrix which is multiplied with the input sequence in Equation 3.26 is commonly referred in literature as invertibility

matrix, which gives the conditions to recover inputs from outputs of a system given the initial state.

Theorem 3.3. A necessary and sufficient condition for the system to be observable is that the null space (or kernel)

of the observability matrix contains only the zero element.

Alternately, a system is observable if and only if rank(On−rank(C)) = n.

We can also analysis other inverse problems associated with the system such as 1) given an output sequence and

initial condition can we uniquely identify the inputs which lead to the outputs(Invertibility), 2) given an output

sequence and associated inputs can we uniquely identify the initial condition (strong observability). In depth

discussion on these inverse problems are beyond on the scope of this course.

Observability gives us the conditions which are essential for building a state estimator or filter. If the system is

unobservable then it is impossible to accurately estimate the state of the system with any kind of state estimator

or filter (e.g luenberger observer, kalman filter).

Similar to controllability matrix, the observability matrix only answer a “yes” or “no” query, meaning it tell whether

the system is observable or not. Akin to controllability, we also define a quantity called the observability gramian

which measures the ability of sensor system to accurately estimate the initial state.
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3.6.1 Observability gramian

Without loss of generality, consider the output sequence Y (0), Y (1), · · ·Y (l − 1) obtained from an autonomous

system, then the energy of the output sequence defined as
∑l−1
τ=0 ‖Y (τ)‖2 can be expressed as,

l−1∑
τ=0

‖Y (τ)‖2 =
[
Y (0)T Y (1)T Y (2)T · · · Y (l)T

]


Y (0)

Y (1)

Y (2)
...

Y (l)

 (3.27)

= (OlX(0))
T

(OlX(0)) (3.28)

= X(0)T
(
OTl Ol

)
X(0) (3.29)

= X(0)T

(
l∑

τ=0

(
AT
)τ

CTCAτ

)
X(0), (3.30)

where
∑l
τ=0

(
AT
)τ

CTCAτ is the observability gramian of the system. Observe that the observability gramian

describe the energy distribution of the output sequence, meaning, it quantifies how hard it is estimate the initial

state in a direction compared to another. Particularly, it is much easier to estimate an initial state aligned with the

eigen vector of the observability gramian associated with the highest eigen value compared to the one connected

with lowest eigen value.

3.7 Duality

For every linear system Equation 3.3 there exist a dual system given by,

Z(k + 1) = ATZ(k) + CTU(k), X(0) = X0 (3.31)

Y (k) = BTZ(k) + DU(k), k = 0, 1, 2 · · · (3.32)

Theorem 3.4. The system is controllable (observable) if and only if the dual system in observable (controllable).
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4 Nonlinear systems

As mentioned earlier, almost every realistic system is non linear in nature. Therefore, it is important to have a

reasonable understanding of non linear system theory to analyze and design control laws for real world systems. As

discussed in the previous lecture, the first approach to analyzing a non linear system is through linearization(details

of this approach will be discussed in a subsequent section). In fact, control design for most of the aircrafts we travel

are carried out using linearization techniques. There are primarily two drawbacks for the linearization method.

First, the linearized model are a good approximation for the non linear system only in a local neighborhood around

an operating point. Secondly, there are non linear system phenomena which cannot be predicted or described by a

linear model. Some such non linear phenomena are:

• Finite time escape The state of a non linear system can go to infinity in finite time. However, even the

state of an unstable linear system approaches infinity only asymptotically. For example ẋ = −x2.

• Multiple isolated equilibrium points. In a linear system, there can be one equilibrium point or infinitely

many continuous equilibrium points. Whereas, a non linear may contain multiple isolated equilibrium points.

Example dynamics of a simple pendulum.

• Limit cycles. The amplitude of oscillation in a linear system depends on the initial state of the system. But

a non linear system can generate oscillations with fixed amplitude and frequency independent of its initial

conditions. Example: Van der Pol oscillator.

• Chaos. Non linear system sometimes exhibits strange steady state behaviors which are neither an equilibrium

nor a limit cycle. These chaotic behaviors sometimes display randomness, whilst the system is deterministic.

Example: Lorenz attractor.

4.1 Existence and uniqueness of solutions

Consider the continuous time non linear system,

Ẋ = F (t,X), X(0) = X0, (4.1)

we now examine the conditions for this system to an have unique solution.

Theorem 4.1. (Local Existence and Uniqueness:). Let F (t,X) be a piecewise continuous function in t and

satisfy the Lipschitz condition

‖F (t,X)− F (t, Y )‖ ≤ L‖X − Y ‖

∀X,Y ∈ B(X0, r),∀t ∈ [0, t1]. Then there exist some δ > 0 such that Equation 4.1 has an unique solution over

[0, δ].

Proof. Refer [13].

The theorem can be extended for existence of global solution.
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Theorem 4.2. (Local Existence and Uniqueness:). Let F (t,X) be a piecewise continuous function in t and

satisfy the Lipschitz condition

‖F (t,X)− F (t, Y )‖ ≤ L‖X − Y ‖

∀X,Y ∈ Rn,∀t ∈ [0, t1]. Then Equation 4.1 has an unique solution over [0, t1].

Proof. Refer [13].

Lemma 1. If F (t,X) and its partial derivatives ∂fi
∂xj

are continuous for all X, then F (t,X) is globally Lipschitz in

X if and if only the partial derivatives ∂fi
∂xj

are globally bounded, uniformly in t.

The results in the continuous time system can be also extended to discrete time systems Xk+1 = F (Xk). But in

this section we will be discussing primarily about continuous time systems.

4.2 Stability of autonomous systems

Consider the autonomous system

Ẋ = F (X), (4.2)

the equilibrium points are the real solutions for the equation

F (X) = 0. (4.3)

Example 26. A linear system Ẋ = AX can have an isolated equilibrium point at X = 0(if A is non singular) or

a continuum of equilibrium points in the null space of A (if A is singular).

Example 27. Consider the dynamics equation of a simple pendulum,

ẋ1 = x2 (4.4)

ẋ2 = −a sin(x1)− bx2, a, b > 0. (4.5)

The equilibrium point of the system computed by solving

x2 = 0 (4.6)

−a sin(x1)− bx2 = 0. (4.7)

The equilibrium points are (nπ, 0) for n = 0,±1,±2, · · ·

In the case of discrete time non linear system evolving according to Xk+1 = F (Xk), the concept of equilibrium

points is replaced using the idea of fixed points. X∗ is a fixed point of Xk+1 = F (Xk) if X∗ = F (X∗).

We now enlist the different notions stability used for analyzing non linear systems. Without loss of generality, we

assume that X = 0 is an equilibrium point of Equation 4.2.

Definition 43. The system is Lyapunov stable if for each ε > 0 there exists a δ > 0 such that,

‖X(0)‖ < δ =⇒ ‖X(t)‖ < ε, ∀t > 0. (4.8)
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Definition 44. The system is asymptotically stable if it is Lyapunov stable there exists a δ > 0 such that,

‖X(0)‖ < δ =⇒ lim
t−→∞

‖X(t)‖ = 0. (4.9)

4.2.1 Lyapunov’s indirect method

Theorem 4.3. Let X = Xe be an equilibrium point for Equation 4.2 where F is continuously differentiable around

a neighborhood D about Xe, then

A =
∂F

∂X

∣∣∣∣
X=Xe

then,

• Xe is asymptotically stable if Re(λi) < 0 for all eigen values of A.

• Xe is exponentially stable if and only if Re(λi) < 0 for all eigen values of A.

• Xe is unstable if Re(λi) > 0 for any eigen values of A.

Example 28. Consider the linearization of Equation 4.4 at Xe = 0 with a = b = 4,

A =

[
0 1

−4 −4

]

The eigen values of A are −2 and −2. Therefore, 0 is a stable equilibrium point.

4.2.2 Lyapunov’s direct method

For the remaining part of the article unless otherwise stated, without loss of generality, we assume that 0 is an

equilibrium point of the system.

Theorem 4.4. Let 0 be an equilibrium point of Equation 4.2 and D ⊂ Rn be an open set containing 0. Let

V : D −→ R be an continuously differentiable function(Lyapunov function) such that

V (0) = 0 (4.10)

V (X) > 0 ∀X ∈ D− 0 (4.11)

V̇ (X) ≤ 0 ∀X ∈ D (4.12)

Then, X = 0 is Lyapunov stable. In addition if,

V̇ (X) < 0, (4.13)

then X = 0 is asymptotically stable.

Proof. Refer [13].

In order to extend the theorem to understand global asymptotic stability of the origin we need the Lyapunov

function to be radially unbounded.
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Example 29. Consider the system, [
ẋ1

ẋ2

]
=

[
−x1 + 2x21x2

−x2

]
(4.14)

and the Lyapunov function,

V (X) = x21 + x22. (4.15)

Then,

V̇ (X) = ∇V · F (x) (4.16)

= −2x22 − 2x21(1− 2x1x2). (4.17)

Note that, V̇ (X) < 0 when (1− 2x1x2) > 0 or x1x2 <
1
2 . Therefore, the origin is locally asymptotically stable.

Definition 45. Domain of attraction [25].The domain of attraction of an equilibrium point X0 is the set,

D(X0) = {X ∈ Rn : lim
t−→∞

φ(t,X) = X0}, (4.18)

where φ(t,X) is the state of the system at time t after starting from X at time zero.

4.3 State feedback stabilization

Consider the general non linear system Ẋ = F (t,X,U), the problem of state feedback stabilization can be defined

as the constructing a state feedback law

U = Γ(t,X) (4.19)

such that the origin is an uniformly asymptotically stable equilibrium point for the closed loop system Ẋ =

F (t,X,Γ(t,X)). Although, the original definition is concerned with the stabilization of origin, the definition can

be extended for other points of interest.

4.3.1 Linear feedback stabilization

Suppose, we want stabilize Ẋ = F (X,U) at a point X = Xd and we were able to compute a U = Ud such that Xd

is an equilibrium point or

F (Xd, Ud) = 0, (4.20)

then we can stabilize the system locally if the linearized of system about (Xd, Ud) is controllable. Let X = Xd+Xδ

and U = Ud + Uδ then,

Ẋ = Ẋd + Ẋδ = F (Xd +Xδ, U = Ud + Uδ).
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Using taylor series expansion we obtain,

Ẋδ = F (Xd, Ud) +
∂F

∂X

∣∣∣∣
Xd,Ud

Xδ +
∂F

∂U

∣∣∣∣
Xd,Ud

Uδ (4.21)

Ẋδ =
∂F

∂X

∣∣∣∣
Xd,Ud

Xδ +
∂F

∂U

∣∣∣∣
Xd,Ud

Uδ (4.22)

Now we can use the tools from linear system theory to stabilize the non linear system. If we compute a state

feedback gain matrix K using method like pole placement or LQR, then we can use feedback law U = Ud + K(X −
Xd) to stabilize the non linear system. The idea can be easily applied to trajectory stabilization(tracking) of a

nominal trajectory (X0(t), U0(t)) such that Ẋ0(t) = F (X0(t), U0(t)). This is a widely used technique for control

design.

4.3.2 Gain scheduling

In the previous subsection, we looked at a design method that guarantee stability in some neighborhood of the

equilibrium point. However, this is very limiting as we would like to stabilize the system over a large region of the

state space about several equilibrium points. This can be achieved by linearizing the system about each equilibrium

point and design a local controller for stability. Then, we can online schedule the gains to go from one equilibrium

point to another. This design methodology which scales the previous design methods can be described by the

following steps:

1. Linearize the given nonlinear system about several operating points, which are parametrized by scheduling

variables.

2. Design a parametrized family of linear controllers to locally stabilize the system around each of the operating

points.

3. Develop a gain-scheduled controller.

4. Test the performance of the gain-scheduled controller through simulation of the nonlinear closed-loop model.

Consider the non linear system and an associated output equation,

Ẋ = F (X,U) (4.23)

y = H(X). (4.24)

Suppose we would to this system to track a reference signal r. It is clear that unlike in a linear system, a linear

controller with a common set of gains cannot be used to track any reference signal of choice. The gain may have to

vary based on the reference signal used. Now assume that there exist an unique pair (Xd, Ud) such that,

0 = F (Xd(r), Ud)(r) (4.25)

r = H(Xd)(r) (4.26)

for all choices of r. To achieve tracking in the presence of unknown disturbances the controller should have an
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integrator. Thus,

ė = y − r (4.27)

U = K1(r)X − k2e. (4.28)

The gains K1(r) and k2 are design such that closed loop state matrix

[
A−BK1 −Bk2

C 0

]
(4.29)

is stable.

Example 30. Consider the system, [
ẋ1

ẋ2

]
=

[
tan(x1) + x2

x1 + u

]
(4.30)

y = x2, (4.31)

we want track a reference signal r. It is straightforward to observe that,

Xd(r) =

[
− tan−1(r)

r

]
, Ud(r) = tan−1(r). (4.32)

We design the following controller,

ė = y − r (4.33)

U = K1(r)X − k2e. (4.34)

The linearized matrices of the system are,

A =

[
1 + r2 1

1 0

]
, B =

[
0

1

]
. (4.35)

Finally, we design the gain such that the closed loop system is stable. The computed gains are,

K1 = [(1 + r2)(3 + r2) + 3 +
1

(1 + r2)
, 3 + r2] (4.36)

k2 = − 1

1 + r2
(4.37)

4.3.3 Feedback linearization

In general, stabilization of non linear system is a difficult problem and is still an active area of research. A slightly

different type of non linear system called control affine system has attracted a great deal of interest in both the

robotics and controls community for eons. This is mostly due to the fact that dynamics of mechanical systems can

be written in a control affine way. A non linear system is control affine if it can be written as
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Ẋ = F (X) +G(X)U. (4.38)

For example, consider the dynamics of a simple pendulum with torque control

ẋ1 = x2 (4.39)

ẋ2 = −a sin(x1)− bx2 + u, a, b > 0, (4.40)

observe that the dynamics of the system in affine in control variable.

Suppose here is a change of variables Z = T(X), defined for all X ∈ D ∈ Rn, that transforms the system into the

form

Ż = AZ + Bγ(X)[U − α(X)], (4.41)

where (A,B) is controllable and γ(X) is non singular for all X ∈ D. If we assign U = α(X) + γ(X)( − 1)V then

the above equation reduces to

Ż = AZ + BV. (4.42)

Therefore, through this feedback process we have converted a non linear system to a linear system. Additionally,

since this is a linear system we can use all the tools from linear system theory to design controllers. As an example,

the pendulum dynamics Equation 4.39 can be linearized by choosing u = a sin(x1) + v.

Although, feedback linearization is a useful technique, it suffers from the drawback that it extensively dependent on

the dynamics model. In other words, model errors could deeply affect the performance of the controller. Additional,

feedback linearization based controller in most cases try to cancel out the natural dynamics of the system in practice

it could be highly energy inefficient.

I would like to point out that there is an analogous tool called differentially flatness, which is widely used in robotics

and control theory. We will not perform a rigorous treatment of the topic here, since it would require to invoke tools

from differential geometry. Readers interested in a more formal analysis of the topic may refer to [15]. Crudely

speaking, a system is differentially flat if there exist a set of outputs, known as flat outputs, for which all states and

inputs are determined by the outputs and a finite number of their derivatives [6]. Thus if we specify the trajectory

of a system in terms of its flat outputs then we can compute what all of the states/inputs must have been doing.

This techniques is extensively used in trajectory planning of mechanical systems like chained carts, quadrotors etc.

Note that every feedback linearizable system is differentiable flat. But according to [19, Theorem 2] If a control

system is differentially flat then it is dynamic feedback linearizable on an open dense set with the dynamic feedback

possibly depending explicitly on time.
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5 Optimization/ optimal control

Optimization is the core approach to solving almost every problem that we encounter in engineering. It is a well

studied topic in literature and still an active area of research, specifically in engineering, mathematics and physics.

But its freshness has never diminished over the years. In general, an optimization problem has the following

structure. It may contain a set of constraints over a set represented using a collection of equalities and inequalities.

The elements in the set which satisfy these constraints are referred as feasible solutions to the problem. In addition,

the optimization problem may also admit a cost(reward) function which is to be minimized(maximized) to obtain

desired optimal solutions. The optimization framework is also used extensively in control system applications

to compute control laws under design constraints. The general terminology given to this framework in control

theory literature is optimal control. In this section, we will introduce a common technique used in optimization

problems known as Lagrange multipliers. Subsequently, we will explore the two most important ideas in optimal

control namely: Pontryagin maximum/minimum principle and Dynamic programming. In depth treatment of the

concepts discussed in this section can be found in [3, 17]. The reader are directed to [16] to learn more about the

computational aspects of optimal control.

5.1 Lagrange multipliers

Consider the problem,

min
X,U

L(X,U) (5.1)

subject to,

F (X,U) = 0. (5.2)

Now, if we define the Lagrangian of the above problem as,

L(X,U, λ) = L(X,U) + λF (X,U) (5.3)

then the necessary conditions for (X∗, U∗) to be an optimal solution of the problem are,

∇XL(X∗, U∗) = λ∇XF (X∗, U∗) (5.4)

∇UL(X∗, U∗) = λ∇UF (X∗, U∗) (5.5)

F (X∗, U∗) = 0. (5.6)

Therefore, we could solve Equation 5.4 to find the candidates for optimal solutions. The method of Lagrangian

multipliers is very powerful in solving constrained optimization problems.
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Example 31. Find the rectangle of maximum area with perimeter p. That is,

L(x, y) = xy

subject to

f(x, y) = 2x+ 2y − p = 0

then using the conditions in Equation 5.4 yields,

y = λ2

x = λ2

2x+ 2y = p.

By solving the above set of equations we arrive at the optimal solution x = p
4 and y = p

4 .

5.2 Optimal control formulation

In this article, we formulate an optimal control problem which tries to address the following problem.

Given a dynamical system Ẋ = F (X,U), where X(t) ∈ Rn is the state of the system and U : [0, T ] −→ Rm, T > 0

is a control action on the system which belongs to a compact set of control actions denoted as U, find a control

input which drives the dynamical system from an initial state to some state in time T > 0 along with minimizing

the cost function

J(X,U) =

∫ T

0

L(X(t), U(t), t)dt+ g(X(T )). (5.7)

We define this problem formally as,

Problem 1.

J(X,U) =

∫ T

0

L(X(t), U(t), t)dt+ g(X(T )) (5.8)

Subject to,

Ẋ = F (X,U) (5.9)

U ∈ U (5.10)

In Equation 5.7,
∫ T
0
L(X(t), U(t))dt and g(X(T ), U(T )) are referred as running cost and terminal cost respec-

tively.

We can also formulate a discrete time optimal control problem akin to the continuous case. In the discrete case, a

discrete dynamical system X(k + 1) = F (X(k), U(k)) such that X(k) ∈ Rn and U(k) ∈ U ⊆ Rm is consider. Once

again, the goal is to compute a sequence of control inputs which can drive the discrete dynamical from one state to

some state in a finite number of epochs N .
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J(X,U) =

N−1∑
k=0

L(X(k), U(k), k) + g(X(N), N). (5.11)

Formally,

Problem 2.

J(X,U) =

N−1∑
k=0

L(X(k), U(k), k) + g(X(N), N). (5.12)

Subject to,

X(k + 1) = F (X(k), U(k)) (5.13)

U ∈ U (5.14)

There are other variations of the problem studied in literature namely 1) variable endpoint control problem and 2)

fixed time variable endpoint problem. But in this manuscript, we will focus on the above mentioned formulation of

the problem.

We will motive this section with a fairly straightforward example.

Example 32. Consider a particle which follows a double integrator dynamics or in plain language Newton’s second

law of motion then,

ẋ = v (5.15)

v̇ = u, (5.16)

such that u ∈ [−1, 1]. Our goal is to reach the origin with zero speed(reach the state x = 0, v = 0) in minimum

time. It is easy to see that the cost function for this problem is,∫ T

0

1dt. (5.17)

If we think about it, we can intuitively understand that the solution to problem amounts to using extreme values in

the controls set and switching between them at the right moment. This type of control strategy is called the bang

bang control. This is a common strategy when using controls with saturation. Lets compute the trajectories of the

system at the extreme controls,

1. If u = 1, given x(0) and v(0).

Solving the equation of motion we arrive,

x(t) =
t2

2
+ v(0)t+ x(0) (5.18)

v(t) = t+ v(0). (5.19)

Furthermore, the phase space((x, v) space) trajectory of the system is x(t) = v2(t)
2 − c1(x(0), v(0)).

2. If u = −1, given x(0) and v(0).
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Figure 5.1: Bang-bang time-optimal control of the double integrator: (a) (left)trajectories for u = 1 , (b)(center)
trajectories for u = −1 , (c)(right) the switching curve and optimal trajectories. Image courtesy: Daniel Liberzon’s
website.

Similar to the previous case we obtain the equations of motion

x(t) = − t
2

2
+ v(0)t+ x(0) (5.20)

v(t) = −t+ v(0) (5.21)

and the phase space trajectory x(t) = −v
2(t)
2 − c2(x(0), v(0))

These curves are shown in Equation 32(a,b), with the arrows indicating the direction in which they are traversed.

It is easy to see that only two of these trajectories hit the origin. Their union is the thick curve in Equation 32(c),

which we call the switching curve and denote by Γ; it is defined by the relation x = − 1
2 |v|v. The optimal control

strategy thus consists in applying u = 1 or u = −1 depending on whether the initial point is below or above Γ ,

then switching the control value exactly on Γ and subsequently following Γ to the origin; no switching is needed if

the initial point is already on Γ. We can prove that bang bang control is indeed the optimal control for the double

integrator using the tools discussed in this article.

In the upcoming subsections, we will examine the two main techniques used of solving the optimal control prob-

lem.

5.3 Pontryagin minimum principle

Lev Pontryagin was a Russian mathematician, who and his students formulated the problem during the cold war era.

Of course, Americans weren’t sitting idle, they had their formulation of the problem called dynamic programming

developed by Richard Bellman. Pontryagin minimum principle is the necessary set of conditions required for

global optimality. We will derive the minimum principle for the discrete case. Since derivation of principle for

the continuous case relies on calculus of variation which will not discussed in this article, we will only state the

conditions for the continuous time case.

We start the derivation using the Lagrangian multiplier technique discussed in subsection 5.1. The Lagrangian of

Problem 2 is

L(X0:N , U0:N−1, λ1:N ) = g(X(N), N) +

N−1∑
k=0

(
L(X(k), U(k), k) +

(
F (X(k), U(k))−X(k + 1))Tλk+1

))
, (5.22)
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where λ0:N = (λ0, λ1, · · · , λN ) denotes the vector of Lagrange multipliers. We define the Hamiltonian for Problem 2

to be

Hk(X,U, λ) = L(X,U, k) + F (X,U)Tλ (5.23)

and rearrange the terms in Equation 5.22 to obtain,

L(X0:N , U0:N−1, λ1:N ) = g(X(N), N)−X(N)TλN +X(0)Tλ0 +

N−1∑
k=0

(
Hk(X(k), U(k), λk+1)−X(k)Tλk

)
(5.24)

Now examine the differential of L and contemplate its changes with respect to the changes in U and X. We

have

dL =

(
∂g(X(N), N)

∂X(N)
− λN

)T
dX(N) + λT0 dX(0) +

N−1∑
k=0

((
∂Hk

∂X(k)
− λk

)T
dX(k) +

(
∂Hk

∂U(k)

)T
dU(k)

)
.

To make the variations along dX(k) zero we need ∂L
∂X(k) = 0 and choose the following Lagrange multipliers to satisfy

this condition.

λk =
∂Hk

∂X(k)
=

∂

∂X(k)
L(X(k), U(k), k) +

(
∂F (X(k), U(k))

∂X(k)

)T
λk+1, 0 ≤ k < N (5.25)

λN =
∂g(X(N), N)

∂X(N)
(5.26)

By making this choice dL can be expressed as

dL = λ0dX(0) +

N−1∑
k=0

((
∂Hk

∂U(k)

)T
dU(k)

)
. (5.27)

If the initial condition fixed, then dX(0) = 0. The second term in Equation 5.27 is zero U(k) is the unconstrained

minimum of Hk ( ∂Hk

∂U(k) = 0). Final, summarizing the conditions yields the minimum principle,

X(k + 1) = F (X(k), U(k)) (5.28)

λk =
∂

∂X(k)
L(X(k), U(k), k) +

(
∂F (X(k), U(k))

∂X(k)

)T
λk+1, 0 ≤ k < N (5.29)

λN =
∂g(X(N), N)

∂X(N)
(5.30)

U(k) = argmin
U∈U

Hk(X(k), U, λk + 1), (5.31)
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for a given X(0) and N .

Given an initial state X(0) and final time tf , the minimum principle in the continuous time scenario can be stated

as

Ẋ(t) =
∂

∂P
Hk(X(t), U(t), P (t), t) (5.32)

Ṗ (t) = − ∂

∂X
Hk(X(t), U(t), P (t), t) (5.33)

P (tf ) =
∂g(X(tf ), tf )

∂X(tf )
(5.34)

U(t) = argmin
U∈U

Hk(X(t), U, P (t), t), (5.35)

where Hk is the Hamiltonian function defined as

Ht(X(t), U(t), P (t), t) = L(X(t), U(t), t) + F (X(t), U(t))TP (t) (5.36)

and P (t) is termed the costate. The second equation in Equation 5.32 and Equation 5.28 is referred to as the adjoint

equation. It is also called back propagation in some other communities.

Using the minimum principle we can prove that the bang bang control is the optimal policy for Example 32.

The readers may refer to [17] for details. In addition, for linear systems minimum principle becomes the sufficient

condition when the control set is convex.

5.3.1 Numerical implementation

From Equation 5.27, it is straightforward to understand that

∂Hk

∂U
=

[
∂H0

∂U(0)
,
∂H1

∂U(1)
, · · · , ∂HN−1

∂U(N − 1)

]
(5.37)

(5.38)

is the gradient of the total cost function with respect to the control input, where ∂Hk

∂U(k) = ∂
∂U(k)L(X(k), U(k), k) +

∂
∂U(k)F (X(k), U(k))Tλk+1.

Since we have the gradient of the cost function with respect to control inputs we can use a gradient decent strategy

to compute the optimal control. The steps for the gradient decent algorithm are as follows,

1. Given a sequence of inputs, compute the sequence states by evaluating the dynamics equation forward in

time. Then, solve the adjoint equation in Equation 5.28 backward time to compute the costates (λ0:N ).

2. Compute the gradient using Equation 5.37 and improve the control inputs using gradient decent. Go to step

1 until convergence.
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5.4 Dynamic programming

Dynamic programming is a consequence of a particular mathematical wisdom: “It is sometimes easier to solve a

problem by embedding it within a larger class of problems and then solving the larger class all at once.” To motivate

this consider this example.

Example 33. Consider the following integral, ∫ ∞
0

sinx

x
dx. (5.39)

This not an easy integral to compute directly, so let’s consider a different problem,

I(a) =

∫ ∞
0

e−ax
sinx

x
dx. (5.40)

The solution for the above integral is I(a) = − tan−1(a) + π
2 . Thus we can conclude that,∫ ∞

0

sinx

x
dx = I(0) =

π

2
. (5.41)

A similar idea when adapted for optimal control problems yield the framework of dynamic programming. In the

context of optimal control instead of solving the problem for an initial state, we solve a more general problem. In

the more general contest, we consider solving the problem by varying initial states and initial times, for which our

problem is a special case. We will start by deriving the equations associates with discrete time problem (Problem

2). The dynamic programming is also used in the context of graph searching. In fact, if we consider the discrete

space problem of (Problem 2) it is precisely a graph searching problem. In practice, many discrete time optimal

control problems are solved by discretizing the state space and preforming a graph search.

We start the derivation by defining a quantity called the value function or the cost to go V(X, t). V(X, k) outputs

the optimal cost to go starting from state X at time step k according to the cost function Equation 5.11 while

complying to discrete dynamics X(k + 1) = F (X(k), U(k)). Thus, given an

V (X, 0) = min
U0:N−1∈U

N−1∑
k=0

L(X(k), U(k), k) + g(X(N), N), X(0) = X (5.42)

V (X,N) = g(X(N), N), X(N) = X (5.43)

V (X,N − 1) = min
UN−1∈U

L(X(N − 1), U(N − 1), N − 1) + g(X(N), N), X(N − 1) = X (5.44)

Due to additive structure of the cost function, we observe that the cost to go function can be written in a recursive

fashion. Hence,

V (X, k) = min
U∈U
{L(X,U, k) + V (F (X,U), k + 1)} (5.45)

V (X,N) = g(X,N). (5.46)
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Equation 5.45 is in accordance with the principle of optimality. Principle of Optimality states that: An optimal

policy has the property that whatever the initial state and initial decision are, the remaining decisions must con-

stitute an optimal policy with regard to the state resulting from the first decision [2]. In other words, If we have

an optimal trajectory starting from an initial state X(0) and if we remove the part of the trajectory starting from

X(0) until some state X(t1), then rest of the trajectory starting X(t1) is also optimal.

Now using cost to go formulation we can compute an optimal control for the problem as

U∗(X, k) = argmin
U∈U

{L(X,U, k) + V (F (X,U), k + 1)} (5.47)

where U∗(X, k) is the optimal feedback control or policy.

Again by defining a value function and using the principle of optimality one could derive a formula for the optimal

policy for the continuous case (Problem 1). Next we will define the appropriate value function and state the

conditions for optimality. Readers may refer to [3, 17] for the complete derivation. The value function for Problem

1 can be defined as

V(t,X) = min
U[t,T ]∈U

{∫ T

t

L(X(τ), U(τ), τ)dτ + g(X(T ))

}
, X(t) = X (5.48)

V(T,X) = g(X) (5.49)

where the notation U[t,T ] indicates that the control U is restricted to the interval [t, T ]. It can be shown that the

value function should satisfy the following partial differential equation ∀t ∈ [0, T ]

∂V
∂t

+min
U∈U

{
L(X,U, t) +

〈
∂V
∂X

,F (X,U)

〉}
= 0. (5.50)

The above equation for the value function is called the Hamilton-Jacobi-Bellman (HJB) equation. The associ-

ated boundary condition with HJB equation is V(T,X) = g(X). Also, the optimal feedback control policy can be

computed using

U∗ = argmin
U∈U

{
L(X,U, t) +

〈
∂V
∂X

,F (X,U)

〉}
(5.51)

The next theorem states that HJB is a sufficiency condition.

Theorem 5.1. (HJB) sufficiency theorem. Suppose that a C1 function V̂ : [t0, t1] × Rn −→ R satisfies the HJB

equation

∂V̂
∂t

+min
U∈U

{
L(X,U, t) +

〈
∂V̂
∂X

,F (X,U)

〉}
= 0. (5.52)

(for all t ∈ [0, T ) and all X ∈ Rn ) and the boundary condition V̂(T,X) = g(X).
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Suppose that a control Û : [t0, t1] −→ U and the corresponding trajectory X̂ : [0, T ] −→ Rn , with the given initial

condition x̂(0) = X0 , satisfy everywhere the equation{
L(X̂, Û , t) +

〈
∂V̂(t, X̂)

∂X
,F (X̂, Û)

〉}
= min

U∈U

{
L(X̂, U, t) +

〈
∂V̂(t, X̂)

∂X
,F (X̂, U)

〉}
(5.53)

Then V̂ (0, X0) is the optimal cost (i.e., V̂ (0, X0) = V (0, X0) where V is the value function) and Û is an optimal

control.

In other words, any policy satisfying HJB equation is an optimal policy. Note that this optimal control is not

claimed to be unique; there can be multiple controls giving the same cost. Therefore, HJB equation is necessary

and sufficient condition for optimality when solved over the whole state space for an optimum. Also observe HJB

is a nice tool to verify if your policy is optimal. We illustrate this with an example [28].

Example 34. Consider a double integrator dynamics problem with following cost function:∫ ∞
0

L(x(t), v(t), u(t))dt =

∫ ∞
0

(x(t))2 + (v(t))2 + (u(t))2dt. (5.54)

Lets assume that someone made a claim that

u(x, v) = −x−
√

3v (5.55)

is an optimal control for this objective function. Now to convince you that this indeed an optimal control, the person

has to use the value function,

V (x, v) =
√

3x2 + 2xv +
√

3v2 (5.56)

and compute,

∂V

∂x
= 2
√

3x+ 2v,
∂V

∂v
= 2
√

3v + 2x.

Therefore,

L(x(t), v(t), u(t)) +
∂V

∂x
v +

∂V

∂v
u = x2 + v2 + u2 + (2

√
3x+ 2v)v + (2

√
3v + 2x)x. (5.57)

The minimum of above function about u can be computed by taking derivatives about u and setting it to zero, which

yields,

u = −x−
√

3v.

Therefore, proposed controller is optimal.

Now, we show that LQR is optimal by deriving it you dynamic programming[16].

Example 35. (LQR). Consider the discrete time dynamics X(k + 1) = AX(k) + BU(k) and cost function

J(X,U) =
1

2

N−1∑
k=0

X(k)TQX(k) + U(k)TRU(k) +
1

2
X(N)TS(N)X(N), (5.58)
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where Q ≥ 0, R > 0 and S(N) ≥ 0. If V (X, k) is the cost-to go function then,

V (X,N) =
1

2
XTS(N)XT (5.59)

V (X,N − 1) = XTQX + U(N − 1)TRU(N − 1)+ (5.60)

1

2
(AX + BU(N − 1))

T
S(N) (AX + BU(N − 1)) .

Since the controls are unconstrained, the control can be compute by differentiation,

∂V

∂U(N − 1)
= 0 = RU(N − 1) + BTS(N) (AX + BU(N − 1)) . (5.61)

Thus,

U(N − 1) = −
(
BTS(N)B + R

)−1
BTS(N)AX(N − 1), X(N − 1) = X. (5.62)

If we define,

K(N − 1) =
(
BTS(N)B + R

)−1
BTS(N)A, (5.63)

then our optimal policy is,

U∗(N − 1) = −K(N − 1)X(N − 1). (5.64)

By substituting Equation 5.64 in cost to go, we derive the optimal cost to go function as,

V ∗(X,N − 1) =
1

2
XT

[
KT (N − 1)RK(N − 1) + Q + (A−BK(N − 1))

T
S(N) (A−BK(N − 1))

]
X. (5.65)

Also, by defining,

S(N − 1) , KT (N − 1)RK(N − 1) + Q + (A−BK(N − 1))
T

S(N) (A−BK(N − 1)) , (5.66)

we can express the optimal cost to go as,

V ∗(X,N − 1) =
1

2
X(N − 1)TS(N − 1)X(N − 1). (5.67)

We can observe this pattern for every time step backwards in time(N−2, N−3, · · · , 0). Therefore, the whole optimal

solution can be succinctly written as,
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K(k) =
(
BTS(k + 1)B + R

)−1
BTS(k + 1)A (5.68)

U∗(k) = −K(k)X(k) (5.69)

S(k) = KT (k)RK(k) + Q + (A−BK(k))
T

S(k + 1) (A−BK(k)) (5.70)

V ∗(X(k), k) =
1

2
X(k)TS(k)X(k) (5.71)

where Equation 5.70 is solved backward from the given S(N) and is referred in literature as discrete time Riccati

equation. One can find a striking resemblance of these equation with the Kalman filter equations. In fact, Kalman

filter is can also be derived in the same way.
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Figure 6.1: Homeomorphism between a
doughnut and a coffee cup

Figure 6.2: A circle is a 1-
manifold. A open neighborhood of
every point on it resembles an open
segment of R.

6 Differential Geometry

1How can we compute quantities like velocity vectors, gradient without leaving the space your are in? In real life we

mostly compute things while staying on earth without realizing that our earth is embedded in a 3D space(Physicists

might disagree with me on this). Differential geometry is all about formalizing this idea of computing quantities in

an intrinsic manner.

6.1 Manifold

Definition 46. (Homeomorphism. [20] Figure 6.1). Two topological spaces X and Y are homeomorphic if there

exists a bijective function f : X −→ Y (which implies the inverse, f−1 : Y −→ X exists and is bijective) such that

both f and f−1 and continuous.

Definition 47. (Manifold [5] Figure 6.2). A manifold is a topological space that locally looks like an Euclidean

space everywhere. That is, if M is a topological space, and p ∈ M is a point in it, then there exists a open

neighborhood U of p (i.e. an open set U containing p) ), such that one can construct homeomorphisms ψ : U −→ Rd

for some nonnegative integer d. The minimum value of D for which it is possible to construct such homeomorphisms

is called dimension of the manifold.

Of course all manifolds are topological spaces, but the converse is not true. A circle is a one dimensional manifold

1Thanks to my friend Subhrajit Bhattacharya for allowing me to use his thesis material for these notes [4]
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Figure 6.3: Topological spaces that are not
manifolds. The spaces look locally Eu-
clidean everywhere, except for the points
marked as ‘P’.

Figure 6.4: The map φ : (S1−o) −→ (0, 2π)
constitutes a coordinate chart. Note that
(S1 − o) is an open subset of S1.

since the neighborhood of every point on it resembles a line segment. Similarly a sphere or a torus are two-

dimensional manifolds. A solid ball is a three-dimensional manifold with boundary. Figure 6.3 shows some simple

topological spaces that are not manifolds. This is because at least at some point in the spaces there does not exist

an open neighborhood that resembles an Euclidean space.

Next we proceed towards defining a coordinate chart on a manifold. There are many natural algebraic tools

associated with the standard Euclidean space(e.g. its vector-space structure,natural definition of differentiation

along the axes, etc.). The main purpose of defining a coordinate chart is to borrow those concepts to arbitrary

manifolds.

Definition 48. (Coordinate Chart [5]). Given an open subset U of a d-dimensional manifold M, and a continuous

injective function φ : U −→ Rd, we say C = (U, φ) is a coordinate chart on U. φ is a homeomorphism over its

image.

Thus, the polar coordinate θ ∈ (0, 2π) used to describe points on a circle Figure 6.4 constitutes a coordinate chart.

The map φ : (S1−o) −→ (0, 2π) maps every points on the circle, except one (exclusion of which makes the pre-image

of φ an open subset of S1 1, and the image an open subset of R1), to the open interval (0, 2π) on R. Similarly, the

familiar polar coordinate on a 2-sphere constitutes a coordinate chart. The open subset under consideration here

is the entire surface of the sphere except the polar points and one longitudinal line, and the function φ maps every

point on it to a point in R2, namely, (θ, γ) - the latitudinal and longitudinal angles.

The variable (θ in case of the circle, (θ, γ) in case of a sphere), natural to Rd, can now be used to describe points

on the pre-image of φ i.e. the open subset U (since φ. has a continuous inverse as well). These are called the

coordinate variables of the chart C. Very often, if x = {x1, x2, · · · , xd} are the coordinate variables corresponding

to a given chart, one simply writes x to refer to points onU instead of writing φ(x).

Definition 49. (Atlas)[5] Figure 6.5. An atlas is a collection of coordinate charts {Uα, φα} on a manifold M, such
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Figure 6.5: Two maps, φ1 : (S1 − o) −→ R
and φ2 : A −→ R with A being an open
subset of S1 constitutes an atlas on S1 . This
is because (S1 − o) ∪A = S1.

Figure 6.6: Chart Transition

that the union of the open subsets covers the entire of M (we say Uα is an open covering of M). That is M ⊆ ∪αUα

Going back to the example of the chart on a open subset of circle, we were unable to incorporate one single point on

the circle for being described by the chart in Figure 6.4. However, with an atlas (Figure 6.5), we can have multiple

separate charts, using which we can cover the entire circle.

Definition 50. (Chart Transition Figure 6.6). Consider two charts {Um, φm} and {Un, φn}, for some open subsets

Um and Un of a d-dimensional manifold M such that Um ∩ Un 6= ∅. Then one can define the map φn ◦ φ−1m :

φm(Um ∩ Un) −→ φn(Um ∩ Un). Note that both the pre-image and image of this map are subsets of Rd. Such a

map is called a chart transition or a coordinate transformation or simply a coordinate change.

A manifold is said to be differentiable if for every pair of charts {Um, φm} and {Un, φn} the transitions φn ◦ φ−1m
are C∞ differentiable functions.
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6.2 Tangent space

We are familiar with the notion of a tangent to a curve or the tangent plane to a surface embedded in R3. The

notion of such tangents is generalized to arbitrary manifolds by tangent space. Consider a chart {Um, φm}. A

point, p ∈ Um is represented by its coordinates φm(p) = x = [x1, x2, · · · , xd] ∈ Rd. Then one can imagine a vector

centered at x and having components [v1, v2, · · · , vd] along the directions of increasing values of [x1, x2, · · · , xd]
Figure 6.6.

Fundamental to the definition of such a vector is the notion of transformation of the coefficients, [v1, v2, · · · , vd],
under a chart transition. Consider the chart transition x̂ = f(x) as discussed earlier. The vector v (sitting at x)

with components [v1, v2, · · · , vd] in the un-barred coordinate variables will have certain components [v̂1, v̂2, · · · , v̂d]
in the barred coordinates (sitting at x̂) Figure 6.6, which is determined by some transformation rule that we are

yet to define. However, whatever that definition be, the property that such a transformation rule on coefficient

vectors attached to points, x or x̂, must satisfy is invariance under a composition of forward and inverse transfor-

mation.

Contravariant Vectors: One such transformation rule for vectors that satisfies the above conditions is v̂j
∑d
i=1

∂fj

∂xi |xvi.
This can be easily seen by noting that [v̂] = Jf [v] (where Jf is the Jacobian matrix of f at x, and [v] represents

the coefficient vector as a column vector). Also, [v] = Jg[v̂] and therefore JgJf = I. Such vectors, the coefficients

of which follow such transformation rules, are known as contravariant vectors (or simply, vectors). There are other

types of vectors that transform differently, but satisfy the said properties under composition of transformations.

One such example is that of covariant vectors, which we will not discuss in details in this section.

A systematic way of writing contravariant vectors is by choosing ∂
∂xi as basis for such vectors (i.e.quantities to

which we ‘multiply’ the said coefficients/components, vi, and take sum to write the full vector). This is purely

done to avoid writing the said transformation rule for vector components explicitly, and instead take advantage of

the standard rule for transformation of partial derivatives from one set of variables to another. Thus, under this

representation, one would write for a vector, v =
∑d
i=1 v

i ∂
∂xi (where as usual the vi are the components in the

specific chart), and asserts that this v is independent of the choice of coordinate chart. That is,

v =

d∑
i=1

vi
∂

∂xi
=

d∑
i=1

v̂i
∂

∂x̂i

Now, from the chain rule of partial derivatives,

∂

∂xi
=

d∑
i=1

∂x̂j

∂xi
∂

∂x̂j
,

then

v̂j =

d∑
i=1

∂x̂j

∂xi
vi (6.1)

Definition 51. (Tangent space). Given a coordinate chart {U, φ} on a smooth manifold M, the tangent space

at a point p on it represented by the coordinate variable x ∈ Ω = Img(φ) ⊂ Rd is a d-dimensional vector space,
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Figure 6.7: An infinitesimal element on a
curve.

TpM = TpΩ, spanned by the basis { ∂
∂x̂1 ,

∂
∂x̂2 , · · · ∂

∂x̂d }.
Remark. Einstein’s Summation Convention for Repeated Indices: Purely for the convenience of writing,

we would often drop the summation sign (capital sigma) inside expressions like
∑d
i=1

∂x̂j

∂xi v
i and whenever there is

a repeated index (i in this case), we will assume the summation to be implied. Thus, for these expressions we will

simply write ∂x̂j

∂xi .

6.3 Riemannian Geometry

We establish a structure on a smooth manifold that allows one to assign vectors in each tangent space a length (and

an angle between vectors in the same tangent space). From this structure, one can then define a notion of length

of a curve. Then we can look at shortest curves (which will be called geodesics). In this subsection, we will mostly

be working with differentiable manifolds.

The definition of length of a curve on a d-dimensional manifold, M, represented by λ : [0, t] −→M, is closely related

with the definition of the length of an infinitesimal element on the curve. One can then integrate the infinitesimal

lengths to obtain the total length of the curve. While the length of an infinitesimal element on a curve can have a

variety of possible definitions (including ones based on arbitrary norms and higher order derivatives of the curve),

the type of definition that we will be interested in is based on quadratic forms on the tangent spaces of the manifold.

Such a definition of length arises naturally in many physical and practical applications, and forms the motivation

for Riemannian metric.

For a given coordinate chart {U, φ} with coordinate variables xi , such that the curve λ lies entirely in U, we

define the curve in the given coordinates as γ = φ ◦ λ : [0, t] −→ Rd Figure 6.7. The domain of λ is called the

parameter space of the curve. A small infinitesimal element on the curve between t and t + ∆t in the parameter

space is then represented by γ̇δt = [δx1, δx2, · · · , δxd] (where xi represent the change in the ith coordinate variable
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across the infinitesimal element in the chart. It is not difficult to note that [∆x] = [∆x1,∆x2, · · · ,∆xd] behaves

like coefficients of a contravariant vector (since in a different coordinate chart one would get ∆x̂j = ∂x̂j

∂xi ∆xi a

consequence of elementary calculus).

Then we define the square of the ‘length’ of the element as

(∆s)2 = Gij∆x
i∆xj (6.2)

gij hence represents elements of a matrix, G (which is specific to the given coordinate chart), such that the length

is given by [∆x]TG[∆x].

The condition that the definition of length must satisfy is that the length of an infinitesimal element should not

change upon change of coordinates. Thus, if we are given another coordinate chart with coordinate variables x̂i,

the following condition must hold,

(∆s)2 = Gij∆x
i∆xj = Ĝpq∆x̂

p∆x̂q (6.3)

Using the transformation rule for coefficients of contravariant vector, ∆xi = ∂xi

∂x̂p ∆xp and substituting it in the

middle term of the above equation, one gets the relationship between Gij and Ĝpq

Ĝpq =
∂xi

∂x̂p
∂xj

∂x̂q
Gij (6.4)

The discussion so far indicates the definition of a bilinear scalar product on contravariant vectors (e.g. acting on two

copies of ∆x = ∆xi ∂
∂xi to give the square of length of the segment as prescribed by Equation 6.3. It is important

to note that the value of this product for two contravariant vectors does not depend on the choice of the coordinate

chart (this is achieved by the way we constructed the transformation rule Equation 6.4). Thus it is a product

defined on the tangent spaces of the manifold itself.

Definition 52. (Riemannian Metric [14]). A Riemannian metric on a differentiable manifold, M, is a symmetric

bilinear scalar product on each tangent space, TpM, p ∈ M, such that it varies smoothly with p. That is, it is a

bilinear function G(p) : TpM× TpM −→ R≥0, that is symmetric in its two parameters, and it itself is smooth in p.

G is called the metric tensor, and the Gij , from our previous discussion, the matrix representation of the metric

in a particular coordinate chart. The symmetry condition implies that the matrix representation is a symmetric

matrix in any coordinate chart.

It is important to note that matrix representation of the metric in a particular coordinate chart simply constitutes

a collections of d(d+ 1)/2 functions in the coordinate variables. That is,

G =


G11(x) G12(x) · · · G1d(x)

G21(x) G22(x) · · · G2d(x)
...

...
. . .

...

Gd1(x) Gd2(x) · · · Gdd(x)

 (6.5)

with Gij(x) = Gji(x).

We use the following notation to write derivatives of the components of the matrix representation of the metric in

a particular coordinate chart,
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Gij,k =
∂Gij

∂xk

We will next describe a few quantities (specific to a particular coordinate chart) derived directly from the components

of the matrix representation of the metric tensor on a particular coordinate system without detailing their immediate

significance. We will hence use those quantities in order to state some results. The readers are directed to [14] for

more detailed discussion on these quantities.

6.4 Geodesic

Consider the length of a curve γ : [0, t] −→ Rd on a Riemannian manifold (understand this in a coordinate sense

i.e. γ = φ ◦ λ, where λ is the original curve and {U, φ}),

L(γ) =

∫ t

0

√
Gij(γ(τ))γ̇i(τ)γ̇j(τ)dτ (6.6)

where γ̇i(τ) is the ith component of the tangent vector along γ at τ(in the chosen coordinates). Due to the way we

defined G and its transformation, the length of a fixed curve on M is independent of the choice of the coordinate

system.

If the start and end points of are constrained to two specific points (i.e γ(0) = o ∈ Rd and γ(t) = d ∈ Rd), then

one can consider the problem of minimizing L(γ) over the different curves, that connect the two points. It can be

shown that the γ that minimizes L, also minimizes the integral

E[γ] =
1

2

∫ t

0

Gij(γ(τ))γ̇i(τ)γ̇j(τ)dτ. (6.7)

The minimizing γ is called a geodesic curve or simply geodesic. This idea can also be formulated similar to what is

done in classical mechanics where the equation of motion is a solution to the Euler-Lagrange equation for a given

Lagrangian function. We now state a theorem along these lines

Theorem 6.1. γ is geodesic if and only if it satisfies the Euler-Lagrange equations for the Lagrangian L. The

Lagrangian in coordinates is defined as:

L(γ, γ̇) =
√

Gij(γ)γ̇iγ̇j . (6.8)

Also, Euler-Lagrange equation in chart takes the form:

d

dτ

(
∂L
∂ẋi

)
− ∂L
∂xi

= 0 (6.9)

The Euler-Lagrange equation can be reduced to a differential equation known as the Geodesic Equation. The

differential equation (geodesic equation) can expressed as
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d2γi

dτ2
+ Γijk

dγj

dτ

dγk

dτ
= 0, (6.10)

where Γijk is the Christoffel Symbol, defined as:

Γijk =
1

2
Gim (Gmk,l + Gml,k −Gkl,m) (6.11)

Therefore, geodesics are solutions to Equation 6.10. It worth noting that, the solution to Equation 6.10 yields local

optima not global optima. Thus, it is possible that more than one curve connecting two points satisfy the geodesic

equation.

The length of the shortest geodesic (i.e. minimum over the lengths of all the possible geodesics between those

points) between two points describe a distance function.
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7 Lie Group and Lie algebra

Lie groups are mathematical objects named after the Norwegian mathematician Sophus Lie. These mathematical

objects are extremely useful in studying symmetrical behaviors in geometry and differential equations. Since objects

like rotation and translation operators2 are also Lie groups, these ideas have been of great interest in robotics

community too. The notes in section are primarily based on [21] and [8].

7.1 Lie Group

A Lie group is a group G which is also a smooth manifold and for which the group operations � : G × G −→ G
(g � h ∈ G ∀g, h ∈ G) and g −→ g−1 g ∈ G are smooth(C∞(G)). A Lie group is abelian if the underlying group is

commutative with respect to the � operation.

Example 36. (The Euclidean space under addition). The Euclidean space Rn under addition is an abelian Lie

group.

7.2 Matrix Lie group

A matrix Lie group (G,�) is a Lie group for which the underlying manifold is analytic and both the group operations

are also analytic3. The Lie groups that are useful for robotics applications are mostly matrix Lie groups. Hence,

we will be discussing only matrix Lie groups in this article. Specifically, we will be concentrating on subgroups of

the space of invertible matrices or general linear group denoted as GL(n,R).

Example 37. (The general linear group(GL(n,R))). The group of all of n× n nonsingular real matrices is called

the general linear group.

Example 38. (The special orthogonal group,SO(n)). The special orthogonal group is a subgroup of the general

linear group, defined as

SO(n) = {R ∈ GL(n,R) : RTR = RRT = I, det(R) = +1}

The dimension of SO(n) as a manifold is n(n−1)/2. For n = 3, the group SO(3) is also referred to as the rotation

group on R3.

Example 39. The group of rigid transformations on R3 is defined as the set of mappings r : R3 −→ R3 of the form

r(x) = RX + P , where R ∈ SO(3) and P ∈ R3. An element of SE(3) is written as (P,R) ∈ SE(3). SE(3) can be

identified with the space of 4× 4 matrices of the form,

r =

[
R P

0 1

]
.

SE(3) is a Lie group of dimension 6.

7.3 Left and right translation

For any element g ∈ G, we define left translation by g as the map Lg : G −→ G given by Lg(h) = gh for h ∈ G.

Also, right translation by g is defined as the map Rg(h) = hg. Since Lg ◦ Lh = Lgh and Rg ◦Rh = Rgh, we have

2The right term is actions
3Taylor series of the operation map converges to the map
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that (Lg)
−1 = Lg−1 and (Rg)

−1 = Rg−1 . Thus, both Lg and Rg are diffeomorphisms of G for each g. Moreover,

left and right translation commute: Lg ◦Rh = Rh ◦ Lg. If the group is abelian then Lg = Rg.

7.4 Lie algebra

The tangent space at the identity element of a Lie group G with some additional algebraic structure in addition

to the vector space is referred to as the Lie algebra of G. Left(right) invariant vector fields are obtained by push

forwarding elements in the Lie algebra with respect to the left(right) translations of all elements in the Lie group.

Since every left (right) invariant vector fields can be constructed by push forwarding tangent vectors at the identity

element, the space of all left(right) invariant vector fields are finite dimensional.

Apart from the vector space structure of a Lie algebra it is also endowed with a bilinear operator known as Lie

brackets denoted as [·, ·] : g × g −→ g, where g ∼= TeG is the Lie algebra associated with the G. The result of

the Lie bracket between η1 ∈ g and η2 ∈ g can be computed by taking the Lie bracket of their corresponding

left invariant vector fields and evaluating the tangent vector of the resulting vector field at the identity element.

Mathematically,

[η1, η2] = [Xη1 , Xη2 ](e), (7.1)

where, Xη1 and Xη2 are the left invariant vector fields associated with the η1 and η2 respectively. Since we are not

discussing about Lie brackets in detail in this article, the reader may refer to [5,15,29] to learn about them.

Example 40. (Lie algebra of (Rn,+)). The groups identity element is origin (e = 0), TeRn ∼= Rn. It is straight-

forward to see that the left invariant vector fields are constant vector fields of the form Xv(x) = v for all x ∈ Rn.

Therefore, we can trivially compute [v1, v2] = 0.

Example 41. (The Lie algebra of GL(n,R) denoted as gl(n,R)). The Lie algebra is the set of all n × n real

matrices, with the Lie bracket structure,

[A,B] = AB −BA A,B ∈ gl(n,R).

Example 42. (The Lie algebra of SO(3) denoted as so(3)). The Lie algebra may be identified with the 3 × 3

skew-symmetric matrices of the form,

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


where .̂4 is the hat map, which maps the angular velocity vector ω to a skew symmetric matrix. The Lie algebra

inherits the Lie bracket structure form gl(n,R),

[ω̂a, ω̂b] = ω̂aω̂b − ω̂bω̂a, ω̂a, ω̂b ∈ so(3).

One can easily show that,

[ω̂a, ω̂b] = ω̂a × ωb, ωa, ωb ∈ R3,

where × is the cross product operator between vectors.

Example 43. (The Lie algebra of SE(3) denoted as se(3)). The Lie algebra of SE(3) can be identified with the

4the hat map and vee map will be defined later
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4× 4 skew-symmetric matrices of the form,

ξ̂ =

[
ω̂ v

0 0

]
, ω, v ∈ R3.

Once again the Lie algebra inherits the Lie bracket structure form gl(n,R), [ξ̂a, ξ̂b] = ξ̂aξ̂b − ξ̂bξ̂a. Similar to so(3),

[ξ̂a, ξ̂b] =

[
̂(ωa × ωb) ωa × vb − ωb × va

0 0

]

7.5 The Exponential and Logarithm Maps

Given a general matrix Lie group, elements sufficiently close to the identity are written as g = exp(X) for some

X ∈ g (the Lie algebra of G) with ‖X‖ � 1. Here, the matrix Lie algebra G can be thought of as the set of all

matrices {X} (not only ones for which ‖X‖ � 1) such that the exponential of each X results in an element of

G.

Explicitly, in the context of matrix Lie groups (which are the ones used in robotics applications) the exponential

map is simply the matrix exponential

exp(X) =

∞∑
i=0

Xi

i!
. (7.2)

The exponential map takes an element of the Lie algebra and produces an element of the Lie group. This is written

as

exp : g −→ G.

As one would guess, the inverse map is called logarithm map:

log : G −→ g, (7.3)

defined as

log(g) = log(e+ (g − e)) =

∞∑
i=0

(−1)i+1 (g − e)i

i
, (7.4)

where e is identity element in the matrix Lie group which is the identity matrix. Additionally, although it is possible

to exponentiate any element of a Lie algebra, the logarithm is only defined in a ball around the identity element of

G. In some cases, this ball extends over the whole of G, or up to G minus a set of measure zero, but, in general,

caution must be exercised in the application of the logarithm. It is noteworthy that, If G is compact it can be

shown that the exponential map is surjective.
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Example 44. (The exponential and logarithmic map on GL(n,R)). Let a ∈ gl(n,R), then

exp(a) =

∞∑
i=0

ai

i!
.

If A ∈ GL(n,R), then

log(A) =

∞∑
i=0

(−1)i+1 (A− I)i

i
, (7.5)

which converges for all ‖A− I‖ < 1.

Example 45. (The exponential and logarithmic map on SO(3)). Let ω̂ ∈ SO(3), then exp(ω̂) corresponds to a

rotation about the vector ω̂ ∈ R3 by an angle ‖ω‖. An explicit formula is given by Rodrigues’s formula [21]:

exp(ω̂) = I +
ω̂

‖ω‖
sin ‖ω‖+

ω̂2

‖ω‖2
(1− cos ‖ω‖). (7.6)

Also, if R ∈ SO(3), then log R = â = θω̂, where θ ∈ R,

cos θ =
trace(R− 1)

2
(7.7)

ω̂ =
1

2 sin θ
(R−RT ). (7.8)

When R = I, θ = 2πk for any integer k then ω̂ can be chosen arbitrarily. Note that the log function is multi-valued

since θ is not unique.

Example 46. (The exponential and logarithmic map on SE(3)). Again, the Lie algebra can be identified with 4× 4

matrices of the form

ξ̂ =

[
ω̂ v

0 0

]
, ω, v ∈ R3 (7.9)

with [ξ̂a, ξ̂b] = ξ̂aξ̂b − ξ̂bξ̂a. The exponential map is given by

exp(ξ̂) =

[
I v

0 1

]
, ω = 0 (7.10)

and

exp(ξ̂) =

[
eω̂ Av

0 1

]
, ω 6= 0, (7.11)

where

A = I +
ω̂

‖ω‖
(1− cos ‖ω‖) +

ω̂2

‖ω‖3
(‖ω‖ − sinω). (7.12)

The log function on SE(3) is given by,

ξ̂ = log

[
R p

0 1

]
=

[
ω̂ A−1p

0 0

]
, (7.13)
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where ω̂ = log R and

A−1 = I− ω̂

2
+

2 sin ‖ω‖ − ‖ω‖(1 + cos ‖ω‖)
2‖ω‖2 sinω

ω̂2, ω̂ 6= 0. (7.14)

7.6 Hat(̂·) and Vee(∨) operators

Every element in the neighborhood of the identity of a connected matrix Lie group G can be described with the

exponential parameterization

g = g(x1, x2, · · · , xn) = exp

(
n∑
i=1

xiBi

)
(7.15)

where n is the dimension of the group and {Bi} is a basis for its Lie algebra g which is orthonormal with respect to

a given inner product. For some Lie groups, the exponential parameterization extends over the whole group. Now,

the “vee” of the Lie algebra is defined as

exp

(
n∑
i=1

xiBi

)∨
=



x1

x2

x3

...

xn

 . (7.16)

The hat operator is the inverse of vee operator.

7.7 Rigid body kinematics

The configuration of a rigid body with respect to some reference configuration is described by an element g =

(p,R) ∈ SE(3) If A is a fixed coordinate frame and B a frame attached to the rigid body, then we write gab =

(pab,Rab ∈ SE(3)) to denote the configuration of B with respect to A. pab represents the location of the origin of the

B frame and Rab ∈ SO(3) its orientation. The group operation on SE(3) allows us to determine the configuration

of a frame C relative to A via an intermediate frame B:

gac = gab · gbc = (pab + RabPbc,RabRbc).

Therefore, any rigid body motion can be represented as curve on SE(3). If we represent g ∈ SE(3) as a 4 × 4

homogeneous matrix,

g =

[
R p

0 1

]

then the group operation is given by matrix multiplication and we may regard SE(3) as a subgroup of the general

linear group, GL(4,R).
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The configuration gab ∈ SE(3) can also be interpreted as a mapping from the coordinates of a point written relative

to the B frame into the coordinates of the same point written relative to the A frame. Formally, this defines an

action of SE(3) on R3 given by Φg(p) = p+ Rq In homogeneous coordinates this action can be written as[
qa

1

]
=

[
Rab pab

0 1

][
qb

1

]

It follows from associativity of matrix multiplication that this actually defines an action of SE(3) on R3.

The action of SE(3) on vectors describes how the velocity of a point is mapped from one coordinate frame to another.

Formally, we represent the velocity of a point as an element of TxR3 and the action of SE(3) on tangent vectors

(velocities) is the lifted action of SE(3) on R3. The lifted action of SE(3) on TR3 is given by Φg∗(vq) = (g(p),Rvq)

where g(p) denotes the action of g on the point q. In homogeneous coordinates, the tangent space (velocity) portion

of the action can be written as

[
va

0

]
=

[
Rab pab

0 1

][
vb

0

]

Since SE(3) is a Lie group, the exponential map can be used to map elements of the Lie algebra into the group.

In homogeneous coordinates, the Lie algebra of SE(3) is a Lie subalgebra of gl(4,R) consisting of matrices of the

form

ξ̂ =

[
ω̂ v

0 0

]
ω̂ ∈ so(3), v ∈ R3

with the Lie bracket given by the matrix commutator. We call an element of the Lie algebra se(3) a twist. A

twist can be interpreted geometrically using the theory of screws. Consider the motion generated by simultaneously

rotating and translating about an axis in the direction ω ∈ R3 going through a point q ∈ R3. Let h represent the

ratio of translational motion to rotational motion. If h is finite, then the resulting rigid motion is the exponential

of the twist ξ̂ ∈ se(3) given by

ξ̂ =

[
ω̂ −q × ω + hω

0 0

]

The one-parameter subgroup exp(ξ̂θ) generated by this twist corresponds to a rotation about an axis followed by

translation along that same axis. Thus the exponential of a twist generates a screw motion.

For SO(3) it can be shown that the exponential map is actually surjective and hence any rigid transformation can

be written as the exponential of some twist.

Let q ∈ R3 be a point attached to a rigid body and let gab ∈ SE(3) describe the trajectory of a frame B attached

to the rigid body relative to a fixed reference frame A. In homogeneous coordinates, the trajectory of the point q

as a function of time can be written as

qa(t) = gabqb

where qa and qb are the coordinates of the point relative to the A and B frames. The velocity of the point, relative
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to the A frame, is given by

va(t) = q̇a(t) = ġab(t)qb,

where we have used the fact that qb is constant since the point is fixed in the body frame. Thus, ĝab(t) ∈ TgSE(3)

can be viewed as a mapping between the body coordinates of a point and the spatial velocity of that same point. A

more appealing representation of velocity is one which does not require switching between coordinate frames. That

is, suppose we wish to find the relationship between the coordinates of a point and its velocity, when both quantities

are specified with respect to a single frame. We can accomplish this by transforming either the coordinates of the

point or the coordinates of velocity to the appropriate frame. For example, if we are given the coordinates of the

point q with respect to the spatial frame A, then the velocity of q with respect to A is given by

va = ġqb = (ġg−1)qa

This is precisely the spatial velocity that is defined by using right translation to pull back the velocity ġ ∈ TgSE(3) to

TeSE(3). A similar argument shows that the body velocity, g−1ġ can be viewed as a map from the body coordinates

of a point to the body velocity of that point. The body and spatial velocities are physically interpreted as the

instantaneous translational and rotational velocity written relative to the body or spatial frame, respectively.
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8 Topology

Motivation: At the coarsest level, spacetime is a set. But, a set is not enough to talk about continuity of

maps, which is required for classical physics notions such as trajectory of a particle. We do not want jumps such

as a particle disappearing at some point on its trajectory and appearing somewhere. So we require continuity

of maps. There could be many structures that allow us to talk about continuity, e.g., distance measure. But we

need to be very minimal and very economic in order not to introduce undue assumptions. So we are interested

in the weakest structure that can be established on a set which allows a good definition of continuity of maps.

Mathematicians know that the weakest such structure is topology. This is the reason for studying topological

spaces.

8.1 Topological Spaces

Definition 53. Let M be a set and P(M) be the power set of M , i.e., the set of all subsets of M .

A set O ⊆ P(M) is called a topology, if it satisfies the following:

(i) ∅ ∈ O, M ∈ O

(ii) U ∈ O, V ∈ O =⇒ U ∩ V ∈ O

(iii) Uα ∈ O, α ∈ A (A is an index set =⇒
(⋃

α∈A Uα
)
∈ O

Terminology:

1. the tuple (M,O) is a topological space.

2. U ∈M is an open set if U ∈ O.

3. U ∈M is a closed set if M \ U ∈ O.

Definition 54. (M,O), where O = {∅,M} is called the chaotic topology.

Definition 55. (M,O), where O = P(M) is called the discrete topology.

Definition 56. A soft ball at the point p in Rd is the set

Br(p) :=

{
(q1, q2, ..., qd) |

d∑
i=1

(qi − pi)2 < r2

}
where r ∈ R+ (8.1)

Definition 57. (Rd,Ostd) is the standard topology, provided that U ∈ Ostd iff

∀p ∈ U,∃r ∈ R+ : Br(p) ⊆ U

Proof. ∅ ∈ Ostd since ∀ p ∈ ∅, ∃r ∈ R+: Br(p) ⊆ ∅ (i.e. satisfied “vacuously”)

Rd ∈ Ostd since ∀p ∈ Rd, ∃r = 1 ∈ R+: Br(p) ⊆ Rd

Suppose U, V ∈ Ostd. Let p ∈ U ∩ V =⇒ ∃ r1, r2 ∈ R+ s.t. Br1(p) ⊆ U, Br2(p) ⊆ V .

Let r = min {r1, r2} =⇒ Br(p) ⊆ U and Br(p) ⊆ V =⇒ Br(p) ⊆ U ∩ V =⇒ U ∩ V ∈ Ostd.

Suppose, Uα ∈ Ostd,∀α ∈ A. Let p ∈
⋃
α∈A Uα =⇒ ∃α ∈ A : p ∈ Uα

=⇒ ∃ r ∈ R+ : Br(p) ⊆ Uα ⊆
⋃
α∈A Uα =⇒

⋃
α∈A Uα ∈ Ostd.
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8.2 Continuous maps

A map f , f : M −→ N , connects each element of a set M (domain set) to an element of a set N (target set).

Terminology:

1. If f maps m ∈M to n ∈ N , then we may say f(m) = n, or m maps to n, or m 7→ f(m) or m 7→ n.

2. If V ⊆ N, preimf (V ) := {m ∈M |f(m) ∈ V }

3. If ∀n ∈ N, ∃m ∈M : n = f(m), then f is surjective. Or, f : M � N .

4. If m1,m2 ∈M,m1 6= m2 =⇒ f(m1) 6= f(m2), then f is injective. Or, f : M ↪→ N .

Definition 58. Let (M,OM ) and (N,ON ) be topological spaces. A map f : M −→ N is called continuous w.r.t.

OM and ON if V ∈ ON =⇒ (preimf (V )) ∈ OM .

Mnemonic: A map is continuous iff the preimages of all open sets are open sets.

8.3 Composition of continuous maps

Definition 59. If f : M −→ N and g : N −→ P , then

g ◦ f : M −→ P such that m 7→ (g ◦ f)(m) := g(f(m))

Theorem 8.1. If f : M −→ N is continuous w.r.t. OM and ON and g : N −→ P is continuous w.r.t. ON and

OP , then g ◦ f : M −→ P is continuous w.r.t. OM and OP .

Proof. Let W ∈ OP .

preimg◦f (W ) = {m ∈M |g(f(m)) ∈W} ∵ (g ◦ f)(m) = g(f(m))

= {m ∈M |f(m) ∈ preimg(W )} preimg(W ) ∈ ON ∵ g is continuous

= preimf (preimg(W )) ∈ OM ∵ f is continuous

=⇒ g ◦ f is continuous

8.4 Inheriting a topology

Given a topological space (M,OM ), one way of inheriting a topology from it is the subspace topology.

Theorem 8.2. If (M,OM ) is a topological space and S ⊆M , then the set O|S ⊆ P(S) such that O|S := {S∩U |U ∈
OM} is a topology. O|S is called the subspace topology inherited from OM .

Proof. 1. ∅, S ∈ O|S ∵ ∅ = S ∩ ∅, S = S ∩M .

2. S1, S2 ∈ O|S =⇒ ∃U1, U2 ∈ OM : S1 = S ∩ U1, S2 = S ∩ U2 =⇒ U1 ∩ U2 ∈ OM
=⇒ S ∩ (U1 ∩ U2) ∈ O|S =⇒ (S ∩ U1) ∩ (S ∩ U2) ∈ O|S =⇒ S1 ∩ S2 ∈ O|S .

3. Let α ∈ A, where A is an index set. Then Sα ∈ O|S =⇒ ∃Uα ∈ OM : Sα = S ∩ Uα.

Further, let U =
(⋃

α∈A Uα
)
. Therefore, U ∈ OM .

Now,
(⋃

α∈A Sα
)

=
(⋃

α∈A(S ∩ Uα)
)

= S ∩
(⋃

α∈A Uα
)

= S ∩ U =⇒
(⋃

α∈A Sα
)
∈ O|S .
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Theorem 8.3. If (M,OM ) and (N,ON ) are topological spaces, and f : M −→ N is continuous w.r.t OM and ON ,

then the restriction of f to S ⊆M,f |S : S −→ N s.t. f |S(s ∈ S) = f(s), is continuous w.r.t O|S and ON .

Proof. Let V ∈ ON . Then, preimf (V ) ∈ OM .

Now preimf |S (V ) = S ∩ preimf (V ) =⇒ preimf |S (V ) ∈ O|S =⇒ f |S is continuous.
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